
 LunarG 2025 Ecosystem Survey Report

 March 2025

 Executive Summary
 Methodology:

 ● The purpose of the ecosystem survey is to help guide provide priorities to LunarG while
 developing the Vulkan SDK and many of the Vulkan Ecosystem developer tools.

 ● It was attempted to reach as many Vulkan developers as possible -- both SDK users and
 non-SDK users. The survey was advertised on X, Reddit, LinkedIn, the Khronos Vulkan
 slack channel, Vulkan Discord, and sent directly to 13,000+ recipients of the LunarG
 Vulkan SDK mailing list. It was amplified by Khronos on their X account and newsletter
 mailings as well.

 ● All comments from open-ended questions are included in this report, regardless if they
 are repeated. This helps you see the frequency of certain types of feedback.

 Some Highlights:
 1. There were 279 respondents.
 2. 47% of the respondents use Vulkan for commercial purposes. 52% of the respondents

 were self-studying Vulkan as part of a personal project or an Academic environment
 (non-commercial).

 3. 72% of the respondents are regular, advanced, or expert Vulkan developers. 28% are
 basic or beginner developers. Hence the feedback is coming from a more experienced
 population.

 4. This was the first year that we asked respondents which region (Americas, Europe, Asia)
 they resided. 60% of the respondents resided in the European region.

 5. WebGPU is becoming an important API for the future
 6. ARM platforms (both Linux and Windows) will be important development environments

 in the future.
 7. slang (as a language and as a compiler) had a significant jump in popularity

 a. 2024: 3% of survey respondents. 2025: ~27% of respondents
 8. Validation Layer Themes:

 a. Improve error messages
 b. Improve coverage
 c. Improve performance

 9. Still strong demand for improved Vulkan documentation and tutorials
 10. Continued concern about complexity and verboseness of the Vulkan API

 LunarG 2025 Ecosystem Survey Results 1

 LunarG Actions for the year to come:
 1. Deprecate the Ubuntu Packages. They will discontinue being updated by June of 2025.

 LunarG is looking for ways to reduce the workload for each SDK release. It has been our
 suspicion that the Ubuntu packages are nice to have but not critical. The handful of
 users that indicated the Ubuntu packages were critical, cited the need to rework their CI
 environment which relies upon package installation. It is very plausible to change these
 CI environments to install the Linux tarball instead.

 a. See if the freed resources enables a Linux on ARM pre-built tarball SDK
 2. Continue validation layer focus on improving GPU-AV.

 a. Getting more people to enable GPU-AV for more complete validation coverage
 b. Performance
 c. More VUID checks requiring validation on the GPU
 d. Descriptor Indexing and Buffer Device Address are popular and LunarG will

 continue to focus on GPU-AV validating them well.
 e. Ray Tracing/Query is so popular. This is currently WIP to do a better job of

 validation.
 f. Mesh Shading probably should get more attention

 3. Continue improvements to validation layer error messages
 a. Note that with the 1.4.309.0 SDK, some more significant improvements were

 made. (See the validation layer error messages document and SDK release notes
 for detail)

 4. Enhance vkconfig and Vulkan Loader to enable adding ICD to the list of available ICDs on
 the system (e.g.: Lavapipe enablement for C.I. purpose)

 5. Time permitting: Are there ways to get a Vulkan on Metal solution that can be Vulkan
 conformant and keep up with Vulkan evolution?

 a. It is known that the current Vulkan on Metal solution (MoltenVK) hasn't been able
 to keep up with Vulkan as it progresses. For example, its support has not moved
 beyond Vulkan 1.2 and it hasn't become a conformant implementation. With 30%
 of the population indicating it is a "must have", ~35% indicating it would be nice
 to have, the ecosystem has a gap in providing a good Vulkan on Metal solution.

 b. LunarG is investigating ways to help improve this situation.
 6. Time permitting: Investigate VK_LAYER_live_introspection as a tool for integration with

 vkconfig/SDK

 LunarG 2025 Ecosystem Survey Results 2

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/error_messages.md
https://vulkan.lunarg.com/doc/sdk/1.4.309.0master/windows/release_notes.html

 LunarG 2025 Ecosystem Survey Report 1
 What type of Vulkan Developer are you? 5
 How experienced of a Vulkan Developer are you? 5
 In which Region do you reside? 6
 Your Vulkan development is for what type of industry (select all that apply) 7
 What are the targets of your Vulkan application? (check all that apply) 8
 Indicate the importance of the listed development environments (skip environments that are
 not important) 9
 Do you use the Vulkan SDK? 10
 If the LunarG Ubuntu packages for SDK releases were removed, what would be your
 response? 11
 How important are the following APIs for your development TODAY 14
 How important are the following APIs for your development IN THE FUTURE 15
 Which of the following Vulkan layers do you use? (answer choices: yes, no, don’t know
 about it) 16
 Do you use the Vulkan Configurator (vkconfig)? 17
 Vulkan Configurator Open-Ended feedback 17
 What is your preferred shading language? Check all that apply 20
 What is your tool of choice for generating SPIR-V? Check all that apply 21
 What is your preferred tool for SPIR-V reflection? Check all that apply 22
 Do you use the Vulkan Profiles toolset? 23
 If you are using the Vulkan Profiles toolset, what are you using them for? (check all that
 apply) 24
 When using the Vulkan Profiles toolset, what are the inhibitors for you to use them easily or
 effectively? 24
 Do you use the Khronos Vulkan Validation Layer (VK_LAYER_KHRONOS_validation)? 25
 How often does the performance of the Validation Layers inhibit effective use of them? 26
 Do you use GPU Assisted Validation (GPU-AV, GPU-Assisted,
 VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT) 27
 Do you use Synchronization Validation
 (VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT) 28
 How do you adjust settings for the Validation Layers? (check all that apply) 29
 Do you parse the messages in your own callback? (Check all that apply) 30
 Please indicate which extensions you currently use or plan to use (check all that apply) 36
 Do you use GFXReconstruct? 37
 Which version of GFXReconstruct do you use? (check all that apply) 38
 How satisfied are you with the reliability and quality of GFXReconstruct? 39
 How important is a Vulkan to Metal translation layer (e.g. MoltenVK) for you? 40
 Open-Ended Feedback 40

 Vulkan on Apple Platforms 41
 Crash Diagnostic Layer 42

 LunarG 2025 Ecosystem Survey Results 3

 Inhibitors to being productive or effective during Vulkan App Development 42
 Shader Compiler, Languages and related Tools 43
 Tooling 45
 Samples 48
 Tutorial 48
 Documentation 49
 Vulkan API and Specification 51
 Android 55
 Miscellaneous 56

 LunarG 2025 Ecosystem Survey Results 4

 What type of Vulkan Developer are you?

 52.5% are self-study or academic
 47.5% are using Vulkan for commercial purposes

 How experienced of a Vulkan Developer are you?

 LunarG 2025 Ecosystem Survey Results 5

 Of the population overall, 72% of the respondents had regular, advanced, or expert experience
 with the Vulkan API. The survey respondents who were doing Vulkan development for
 commercial purposes had more advanced or expert level experience with the Vulkan API.

 In which Region do you reside?

 LunarG 2025 Ecosystem Survey Results 6

 Your Vulkan development is for what type of industry
 (select all that apply)

 This question is asked to see if Vulkan is expanding into other industries. Compared with the
 data from 2 years ago, there are no significant shifts.

 LunarG 2025 Ecosystem Survey Results 7

 What are the targets of your Vulkan application? (check
 all that apply)

 LunarG 2025 Ecosystem Survey Results 8

 Indicate the importance of the listed development
 environments (skip environments that are not important)

 Windows on ARM for both Linux and Windows become more important than x64/x86.
 Interesting…

 LunarG 2025 Ecosystem Survey Results 9

 Do you use the Vulkan SDK?

 Which of the following Vulkan SDKs do you use? (check all

 that apply)

 LunarG 2025 Ecosystem Survey Results 10

 If the LunarG Ubuntu packages for SDK releases were
 removed, what would be your response?

 LunarG 2025 Ecosystem Survey Results 11

 LunarG is looking for ways to reduce the workload for each SDK release. It has been our
 suspicion that the Ubuntu packages are nice to have but not critical. The handful of users that
 indicated the Ubuntu packages were critical, cited the need to rework their CI environment which
 relies upon package installation. It is very plausible to change these CI environments to install
 the Linux tarball instead.

 As such, LunarG will be deprecating the Ubuntu packages in the future.

 What suggestions do you have for the Vulkan SDK?

 (open-ended)
 1. New SDK versions

 a. Arm version please.
 b. Nice to have Ubuntu ARM packages as well.
 c. Vulkan sdk for linux arm

 2. Installation
 a. Provide an offline installer.
 b. I would appreciate an info that if installing on mac and not in global system wide

 install, it wont work really
 i. LunarG comment: The SDK works fine without global installation. The two

 draw backs are you have to run setup-env.sh from the terminal to set
 environment variables to point to the SDK files, and you don't get a
 system-wide ICD installed. Some developers will prefer one approach over
 the other. We could attempt to put this information into a message during
 installation to make it more obvious.

 c. Ma ke it easy to pull the tarball from CI or scripts (no redirect on download page
 etc)

 d. Regarding question 8 and how to obtain the SDK, while I don't use ubuntu
 packages, I do rely on the SDK being available in a package manager.

 3. IDE
 a. I would love to have first party plugins for GLSL for VS Code and maybe Rust

 Rover. The plugins existing today suck immensely. Would be great if those
 included #include syntax

 b. Not having a single suitable interactive development environment having a c++
 toolchain along with vulkan SDK and tools built in.

 c. Please please do the GLSL plugins!!!
 d. We need better extensions in VSCode for GLSL development.

 4. SDK content additions
 a. Include Renderdoc

 LunarG 2025 Ecosystem Survey Results 12

 b. Make Rust a first class citizen in the Vulcan SDK. It’s kind of obvious that it is the
 future at this point. As far as I cab tell, Safety without no performance overhead
 has become critical.

 c. Having the Slang component in the SDK simplifies dev environment setup a lot,
 but that's quite a lot of lag given how fast they're moving on bug fixes and
 updates.It'd be nice if there was a "rerun the installer" or "replace this subfolder
 with that tarball" process to refresh Slang in place.

 d. Make installation of Vulkan samples an option.
 e. Make it put a shortcut to the Vulkan Configurator on the user's desktop. I see a

 lot of Vulkan beginners who just don't know about the Vulkan Configurator, and
 making it more discoverable would help them

 5. Make fish-compatible setup-env file
 6. SDK is getting better and making our lives easier every year. :)
 7. Very happy with the tools provided in the Vulkan SDK.
 8. None this year. It's mostly been a pleasure to use.
 9. I'm happy :)
 10. Thanks for improving Vulkan! It is great!"
 11. I appreciate the effort of creating and maintaining the SDK. Many thanks, especially for

 vkconfig.
 12. Have better support for windows 11.
 13. You're doing great! Keep with the same pace!
 14. Always appreciate the amount of work that is put in the ecosystem and the professional

 and friendly contact with the Lunar-G people. Especially the last has been very useful to
 me

 15. Please keep it working on older Linux systems (older GLIBC), I cannot use the latest
 SDKs on all my Linux systems.

 16. Thank you for everything you've done. Both as a hobbyist developer for enabling me to
 do graphics in a significantly more effective and pleasant manner than in OpenGL days
 and as an user, for setting up the environment so software like dxvk and vkd3d-proton
 can exist, letting me use Linux for gaming too.

 17. More frequent updates, less codebase breaking changes in small releases, or at least
 with more warning/guides to updating (e.g. vk::DispatchLoaderDynamic ->
 vk::detail::DispatchLoaderDynamic)

 18. Where is chucked vulkan spec?
 19. Having a more easier high level framework as well, or at very least guidance on higher

 level middleware that builds on top of Vulkan.
 20. All I want is a tutorial on how to get Vulkan to work on my mac without XCode. I usually

 use vim and tmux. Would be happy with VSCode. I need to be able to use a make file.
 There's a lot of settings there.

 LunarG 2025 Ecosystem Survey Results 13

 How important are the following APIs for your
 development TODAY

 LunarG 2025 Ecosystem Survey Results 14

 How important are the following APIs for your
 development IN THE FUTURE

 As expected, webGPU will increase in importance in the future.

 LunarG 2025 Ecosystem Survey Results 15

 Which of the following Vulkan layers do you use? (answer
 choices: yes, no, don’t know about it)

 LunarG 2025 Ecosystem Survey Results 16

 Do you use the Vulkan Configurator (vkconfig)?

 Vulkan Configurator Open-Ended feedback
 All open ended feedback is listed here, regardless if the same comment is said many times.

 1. Usability
 a. A bit more documentation on what all the checkboxes on the right mean would

 be nice (maybe a right-click to go to a detailed description of what it catches), but
 honestly I think it's fine as is.

 i. LunarG comment: All the settings have tooltips in the application.
 b. Detailed Documentation
 c. The UI is very confusing
 d. I find vkconfig weird to use. When I enable API I can never find where the dump

 goes to half the time
 e. Make sync validation more discoverable. The current right-hand sidebar of

 options is great for advanced users but I worry that beginners get overwhelmed
 by the options and don't know how to navigate them"

 2. Happy
 a. none, its great
 b. Working great no requests currently
 c. none, works as expected

 LunarG 2025 Ecosystem Survey Results 17

 d. Honestly, it's great.
 e. None. It's performed all of my needs.
 f. None, all previous suggestions have been implemented. <3
 g. still need to get more familiar with vkconfig3, already seeing many usability

 improvements and not missing anything atm
 h. In-App documentation.

 3. Quality/stability
 a. Improve stability (it crashes when I try making a custom profile with

 synchronization + validation).
 b. I see some errors when I first start it up, every time.

 ".../Vulkan/RTSSVkLayer64.json is not a valid layer manifest", etc....
 i. LunarG comment: This issue has been fixed in the 1.4.309.0 SDK:

 https://github.com/LunarG/VulkanTools/issues/2285
 c. If DPI changes (connecting and disconnecting external screen to laptop) vkconfig

 GUI layout gets broken.
 4. Enhancement Requests

 a. Make some data searchable. For example, opening Vulkan Info, and selecting a
 device, opens up a huge list of properties. It would be great to be able to search it
 by typing a name.

 i. LunarG comment: We have created a feature request in the github
 repository for this enhancement. vkconfig: Add searchable diagnostic
 #2281

 b. Recompile with qt6
 i. LunarG comment: This has been completed and is delivered in SDK

 1.4.309.0 for the Linux tarball, Ubuntu packages, Windows on ARM SDK,
 and macOS SDK. Qt6 support is coming soon for the Windows X64 SDK.

 c. maybe build into vkconfig a one click way to use validation layers from github
 (latest commit or specific) since there's build artifacts now could maybe even
 download them

 i. LunarG comment: This may be a nice ease of use enhancement to
 vkconfig. An issue has been logged in the LunarG/VulkanTools repository
 as a possible future enhancement.
 https://github.com/LunarG/VulkanTools/issues/2283

 d. I would like to be able to skip debug breaks for messages with certain IDs or
 from certain sources, e.g. the Vulkan loader. I don't want to filter these messages,
 just skip the debug breaks.

 i. LunarG comment: Most likely a change is needed in the validation layer
 and not vkconfig. A tracking issue has been created in the validation layer
 repository:
 https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650

 LunarG 2025 Ecosystem Survey Results 18

https://github.com/LunarG/VulkanTools/issues/2285
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2283
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650

 e. While relatively niche (compared to the more common developers), more tools
 for IHVs developing ICDs would be useful. Stuff like making it easier to handle
 the variables for overriding which ICD is chosen.

 i. LunarG comment: This is already under investigation to provide more
 control over handing Vulkan drivers (e.g. lavapipe). Stay tuned for a future
 enhancement.

 5. Other
 6. I mainly use it to configure applications that I run from IDE/terminal. I start

 vkconfig set the config minimize it. Some times a day I reconfigure based on
 needs. Tool does it job for me.

 7. I hate that I need to have vkconfig open to get the GPU debug printf extension to
 work. This seems to be a never ending issue. End users writing shaders should
 be able to printf without needing to know intricate Vulkan configuration details.

 a. LunarG comment: You can use environment variables or
 VK_EXT_layer_settings to configure the validation layer as well, if you
 don't want to open the Vulkan Configurator. See the SDK documentation:
 https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_la
 yer.html and
 https://vulkan.lunarg.com/doc/view/latest/windows/layer_configuration.
 html

 8. Save settings while it's not active
 a. LunarG comment: Vulkan Configurator already does this. If you have a

 situation where that is not working, please submit an issue to
 VulkanTools on vkconfig.

 9. Add a default profile that enables almost everything
 10. I also do not like VUIDs to be negative numbers. It might be hex number or dec

 number but negative looks like that the programmer mistakenly wrote %i instead
 of %u in the formatting string, or something like that. Not too serious problem.
 But it might be easy improvement.

 i. LunarG comment: This is an issue for the validation layer.
 11. I'm too new to this to offer any sort of useful suggestion.
 12. ability to emulate different devices with different drivers (preferably different

 vendors and models), operating system as well
 13. Specific overrides, like adding only a single layer on top of what was specified in

 a program (e.g. adding VK_LAYER_shader_object to a program for a platform that
 doesn’t support shader objects)

 14. Make vkconfig more discoverable, perhaps with a desktop shortcut
 a. LunarG comment. After SDK installation, the user is given the option to

 start vkconfig. It is also in the Windows start menu.

 LunarG 2025 Ecosystem Survey Results 19

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

 What is your preferred shading language? Check all that
 apply

 Compared to last year, slang has made a significant jump in shader language preference. In
 2024 it was preferred by about 3% of the population vs. ~27% today.

 Other, commercial developers:
 1. NZSL
 2. MLIR
 3. zig
 4. A subset of Rust itself
 5. custom language
 6. Nabla HLSL STL
 7. Nabla HLSL STL
 8. WGSL
 9. Blender GLSL
 10. We want to transition to slang
 11. vcc
 12. My custom language that compiles to SPIR-V
 13. rust-gpu
 14. Ruamoko (work in progress, not ready for others)
 15. Vcc
 16. Rust (rust-gpu)

 LunarG 2025 Ecosystem Survey Results 20

 What is your tool of choice for generating SPIR-V? Check
 all that apply

 Slang made a significant jump in the preferred tool for generating spir-v. In 2024 it was at about
 3% overall. This survey is showing it at about 27%.

 Other, commercial developers:
 1. NZSL
 2. proprietary translation tool
 3. MLIR
 4. naga
 5. Custom
 6. Naga
 7. custom generator
 8. Clang
 9. Clang
 10. naga (note: NAGA is a shader translator and validator. Part of the wgpu project)
 11. vcc
 12. Naga (Rust)
 13. qfcc (quakeforge, wip)

 LunarG 2025 Ecosystem Survey Results 21

 14. Vcc
 15. embedded shaderc into my app
 16. rust-gpu

 What is your preferred tool for SPIR-V reflection? Check
 all that apply

 There are multiple reflection tools available. The purpose of this question was to see if there
 was an obvious tool that wasn't being used. Evidently not.

 Other category:
 1. NZSL
 2. I don't use SPIR-V reflection
 3. N/A
 4. I don't use reflection
 5. RenderDoc
 6. SPIRV-reflect sucks
 7. Naga
 8. not needed
 9. none.
 10. unfortunately not used yet.
 11. spirv-tools

 LunarG 2025 Ecosystem Survey Results 22

 12. The available SPIR-V reflection tools are either too cumbersome, complicated, or lack
 features I need, so I wrote my own.

 13. We want to transition so slang (but not active yet)
 14. rspirv (rust crate)
 15. Hardcoded
 16. https://docs.rs/spirq/latest/spirq/
 17. I roll my own
 18. parsing the bytecode in C
 19. Custom library
 20. spirv-reflect
 21. I don't use reflection for now

 Do you use the Vulkan Profiles toolset?

 Similar rates of usage as the previous year.

 LunarG 2025 Ecosystem Survey Results 23

 If you are using the Vulkan Profiles toolset, what are you
 using them for? (check all that apply)

 There were no "other" usages of the Profiles toolset listed by survey respondents. So the Profiles
 toolset is being used for the expected use cases.

 When using the Vulkan Profiles toolset, what are the
 inhibitors for you to use them easily or effectively?

 1. Can't scrape large amounts of GPU reports from gpuinfo.org
 a. LunarG comment: There is an API to query gpuinfo.org documented here:

 https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.m
 d

 2. No changes needed that I could think off
 3. Build environment must support the instance extensions to have the profile included in

 the binary.
 a. LunarG comment: To support this would require some significant changes to the

 Vulkan Loader. This was evaluated and determined that it would not be pursued
 because it would be a breaking change (can't break compatibility until a 2.0
 release).

 LunarG 2025 Ecosystem Survey Results 24

https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md
https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md

 4. No formal specification like Vulkan's vk.xml, this makes generating a Rust wrapper have
 to deal with parsing C, or manual as I currently do it.

 5. How restrictive the extension capabilities are
 6. Invest more in the Vulkan Profiles Library
 7. More investment in the Vulkan Profiles Library, such as formal specification with a .xml

 to match that of Vulkan.

 Do you use the Khronos Vulkan Validation Layer
 (VK_LAYER_KHRONOS_validation)?

 LunarG 2025 Ecosystem Survey Results 25

 How often does the performance of the Validation Layers
 inhibit effective use of them?

 LunarG comment: Similar to last year. Those who are impacted by the performance of the
 validation layer are commercial developers and the performance impact is not always there.
 Most likely when using GPU-AV and synchronization validation is when the performance hit is
 observed.

 LunarG 2025 Ecosystem Survey Results 26

 Do you use GPU Assisted Validation (GPU-AV,
 GPU-Assisted,
 VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)

 Comments about why they are not using GPU-AV:
 1. Didn't try yet
 2. but I intend too very soon
 3. Going to start after this conference
 4. I've had a couple issues with it causing crashing and it causes an unacceptable

 performance impact. Often tools like renderdoc or NVIDIA Aftermath are enough for my
 use cases

 5. -
 6. Far too slow
 7. Tried to have our test suite run with it, it was too slow.
 8. every few releases it will crash or blackscreens my app, when it does work frame times

 are horrible so I tend to avoid it unless something is really wrong
 9. Last time I used it, it reported false positives and introduced GPU crashes that were not

 present without it
 10. Last time I checked it wasn't checking out of bounds accesses to storage buffers
 11. Causes the Nvidia driver to crash - but i haven't tested with 572.16

 LunarG comment: With more validation moving to the GPU, for developers to get a fuller
 validation coverage, they really need to be enabling GPU-AV. GPU-AV is still under active

 LunarG 2025 Ecosystem Survey Results 27

 development within LunarG and we are eager for you to submit issues. Our goal is to improve
 coverage and performance to make it usable most of the time.

 Do you use Synchronization Validation
 (VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION
 _VALIDATION_EXT)

 "Here's why not" comments:
 1. I'm scared of what it might tell us. Ignorance is bliss. Also, using it on Android/iOS

 through a MAUI project is cumbersome.
 2. I usually don’t have large sets of command buffers which need intricate synchronizing
 3. It doesn't work for timeline semaphores.

 a. LunarG comment: Synchronization validation for timeline semaphores was
 completed in 2024. Is there an issue with it or is this statement made because
 the user had not yet updated to a version of the SDK or validation layer that
 provides support?

 4. It's incomplete. Has too many false positives. Reporting issues results in several months
 of waiting before a non-fix is made.

 a. LunarG comment: Somewhere last year we started to follow a policy of
 false-positive free behavior. Some functionality was disabled that causes
 false-positives, some things were fixed, some false-positive friendly features
 need to be turned on manually and are marked as heuristic. We are pretty serious
 about keeping it this way and currently we are not aware about active

 LunarG 2025 Ecosystem Survey Results 28

 false-positives (but there could be some). Please open issues because that's
 something we care about.

 b. LunarG comment: Regression defects are given the highest priority before
 working on new validation. If any regression is detected, please submit a github
 issue indicating it was a regression.

 5. I find that it reports on many things that I see as perfectly valid and work across NVIDIA
 and AMD without issues

 a. LunarG comment: Yes, if you know how specific hardware works it might be valid
 for that hardware but still be a violation of the Vulkan spec and the validation
 checks against the spec. It's fine to violate spec in production environments
 when you know what you are doing. It is also possible that for timing purposes
 you are getting lucky.

 6. My application skips synchronization on purpose and this layer will complain

 How do you adjust settings for the Validation Layers?
 (check all that apply)

 Other comments:
 1. or VkInstanceCreateInfo
 2. Ignore false warnings from code
 3. I will use VK_EXT_layer_settings inside Vulkan code in the future
 4. I haven't had a need to, but I'm aware of the vkconfig if I need to

 LunarG 2025 Ecosystem Survey Results 29

 LunarG Take-aways:
 1. We still need to support the vk_layer_setting.txt file
 2. Glad to know that vkconfig is the true majority
 3. People do use settings mostly (This is good!)
 4. There are still a good number of people (about 25%) who don't use settings (or not

 aware of them) so the "out-of-the-box" needs to still be a good experience and we may
 need to do more promotion of the value of using settings.

 Do you parse the messages in your own callback? (Check
 all that apply)

 Other comments:
 1. I regex out the verbose debug message text, though it seems to frequently change and

 break.
 a. LunarG comment: There is now a JSON format that they can turn on (as of the

 1.4.309.0 SDK) and using that, likely no need to do a regex and can ensure the
 JSON schema will not break in the future

 2. I pass them to my logging framework.
 3. Own logging system with partial parsing
 4. I run them through a custom logging system.

 LunarG 2025 Ecosystem Survey Results 30

 5. I have my own logging utilities, but I don't parse anything, aside from the occasional
 string search to remove redundant errors.

 6. I use the log callback to rouge the log messages into my own logger, which both prints
 them to a file and to stdout

 7. I forward the messages to our logging system
 8. Basic Windows OutputDebugStringA callback
 9. I don't parse the messages, just read them. I do check for absence of

 validation-warnings/errors in unit/functional tests though
 10. We record the messages in our app's log.
 11. I filter messages.
 12. I gather the output and feed it into my regression testing system
 13. set breakpoints etc.
 14. Redirect between stdout and OutputDebugString as appropriate (Windows)
 15. In unit tests, they are logged in a file, when the application is running, they are both

 written to stdout and to a log file.
 16. Yes. To ignore false positives.
 17. I ignore certain errors instead of terminating my App
 18. I log it as formatted output so I can see what the message, messageId and object(s) are

 (etc.)
 19. I use trasnlation to log file(for All Platforms) + stderr for Desktop Unix and

 OutputDebugString Windows
 20. simply print to stderr and exit(1)
 21. I log to stdout and raise SIGTRAP or debug break

 LunarG comment: Wow. Over half of the people use the default format. A change was just made
 in the validation layers that will be delivered in the 1.4.309.0 SDK that makes improvements to
 this format.

 How could the validation layers be improved?

 (Open-ended)
 All open ended feedback is listed here, regardless if the same comment is said many times.

 1. More/better/timely coverage:
 a. better & more complete validation layer support
 b. adding more VUID coverage
 c. More checks, obviously.
 d. Occasionally the lack of validation for some parts of the API.
 e. GPU assisted validation doesn't check all access hazards.
 f. More video validation layers
 g. More validation for VK 1.3 and 1.4 features and extensions.

 LunarG 2025 Ecosystem Survey Results 31

 i. LunarG comment: Validation for 1.3 and 1.4 is complete. New extensions
 are validated shortly after public release.

 h. More ray tracing validation coverage
 i. LunarG comment: All of the CPU based validation for ray tracing is

 complete. There is a lot of validation for ray tracing that must be done on
 the GPU. Here is a tracking issue for that work:
 https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446

 i. Timeline semaphores and queue family transfers
 i. LunarG comment: Synchronization validation of timeline semaphores was

 completed as of the 1.3.296.0 SDK
 j. The validation layer's don't work with timeline semaphores.

 i. LunarG comment: Synchronization validation of timeline semaphores was
 completed as of the 1.3.296.0 SDK

 k. Better support for descriptor indexing and descriptor buffers.
 l. New extensions are not that important for me, but completing the basis is.
 m. have validation-layer coverage for new features as early as possible
 n. Maybe more validation coverage? Validation layers are the best tool of all,

 probably. Improving them is very useful!
 o. better sync and oob access validation when buffer device addresses are involved
 p. Fewer false positives. These practically force you to use gigabarriers for

 everything if you use bindless, otherwise you get worthless GPU-AV.
 q. Synchronization validation does not catch some errors.
 r. GPU assisted validation needs some love or at least refresh the ecosystem's

 memory on what checks are implemented and what checks are missing.
 i. LunarG comment: Agreed. And GPU-AV validation is currently a top

 priority at LunarG.
 s. Acceleration structure, shader binding table should be able to detect that they are

 not created correctly
 t. More synchronization validation
 u. Focus on HLSL and GPU assisted validation since most things move to GPU

 driven
 v. Debugger support for descriptor buffers

 2. Performance:
 a. When I enable debugPrintfEXT, the fps of my app drops a lot. I hope that the fps

 will not drop even if I enable debugPrintfEXT.
 i. LunarG comment: The 1.4.309.0 SDK should be faster now since we now

 only do work if the app has printf. If the user is not wrapping their
 debugPrintfEXT with a condition to only print once, and they are printing a
 value for a fragment shader that is running a million times, that will be
 slow as you are trying to print a million times

 b. Faster GPU Assisted Validation

 LunarG 2025 Ecosystem Survey Results 32

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446

 c. Less performance overhead.
 d. Improved performance
 e. perf
 f. more performance
 g. just being faster in general
 h. improve performance.
 i. Performance of the validations layers
 j. 1000x synchronization validation layer.

 3. Error messages:
 a. The information provided should be more precise
 b. The validation layers should be more consistent and provide better information

 for debugging.
 c. provide a mory readable and clean format output.
 d. Make errors more readable?
 e. Clearer more user-friendly messages
 f. Continue improving error messages.
 g. I think they're fine, though to someone relatively new, it seems verbose and

 probably too "spec"-y. I think I've gotten used to parsing it in my head and
 understanding where I messed up.

 h. If their error handling were more readable…
 i. Improved formatting of error messages.
 j. reasonable format for printing and maybe structure (eg, json)
 k. Better readability, or maybe a UI you can use to "inspect" the errors better
 l. Cleaner error messages
 m. Readability of error messages could be improved
 n. More human-readable, maybe suggesting fixes in the registry or validation

 message itself
 o. Validation errors are hard to read

 i. LunarG comment: In response to all the comments above, the 1.4.309.0
 SDK will have a cleaner format. There is also an option added to report
 JSON and then the user can format how they find it best for them.

 p. Let the user specify enough information to report errors sooner (e.g. in cases
 where there is just one command buffer being recorded per frame and it runs
 sequentially). Getting an error when you submit and not being able to trace where
 it came from sucks. Alternatively, allow the user to place breadcrumbs and report
 the most recent breadcrumb executed in the message."

 i. LunarG comment: At the 2025 Vulkanised that took place in February
 2025, Spencer Fricke gave a presentation about debugging your GPU
 workflow. The presentation is here:
 https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spe
 ncer-Fricke-LunarG.pdf Starting around slide 40 you can find specific
 information about vkCmdBeginDebugUtilsLabelEXT.

 LunarG 2025 Ecosystem Survey Results 33

https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf
https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf

 q. I do not understand how to parse synchronization layer messages and correlate
 all the data they provide with the API dump output.

 r. sync validation messages read like sacred texts you need to journey up to the
 wise one to decypher, generally finding out which cmds are involved is more
 painful than it should be

 s. More sync error info
 t. Better validation error output for sync errors, they feel hard to track down

 i. LunarG comment: With the 1.4.309.0 SDK, improvements have been made
 to the synchronization validation error messages to make them human
 readable.

 u. Debug message from VK_KHR_DEBUG_UTILS_EXTENSION_NAME was hard to
 read, maybe it should be multiline.

 v. The feedback from the validation layer is still confusing and not accurate enough.
 At the end of last year, we spent a month finding a trivial error just because it
 occasionally showed up in the validation layers.

 4. Best Practices
 a. More performance checks
 b. would be interesting if developer had received "tips" what can be improved in API

 calling for optimal usage.
 5. Configuration

 a. Better documentation for the validation layers and how to work with them.
 i. LunarG comment: How to configure the validation layers is fully

 documented here::
 1. https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/

 main/docs/settings.md
 ii. Your comment made me realize that the same documentation should be

 available in the SDK documentation and currently is not there. This will be
 fixed in the 1.4.309.0 SDK

 b. Somehow more aggressive defaults without the use of environment variables or
 vkconfig

 i. LunarG Comment: As of the 1.4.309.0 SDK, useful warnings that were not
 on by default will now be enabled by default.

 c. It is very complex to obtain and install for mobile device emulators
 d. more stuff enabled ootb,
 e. Make the debug printf layer work well without vkconfig, eg by exposing all

 options through extensions/flags in the API that an engine can directly work with.
 i. LunarG comment: There is now a `VK_LAYER_PRINTF_ONLY_PRESET`

 environment variable that can be used to quickly turn it on without
 vkconfig (also can be set through the API with VK_EXT_layer_settings)

 f. I have found 3 different ways to configure validation layers and none of them
 seem to work with rust/vulkanalia.

 g. more modern interface, simpler integratrion

 LunarG 2025 Ecosystem Survey Results 34

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md

 h. The BestPractices-specialuse-extension warning for debug_utils is shown on a
 debug build. It should only show on a release build otherwise people will simply
 filter it out which defeats the purpose and adds extra work.

 i. If it cannot be determined whether an application is running in release or debug I
 do not think this is a proper validation

 j. better integration with IDEs
 6. Quality/bugs

 a. Focus on validation layers, make them perfect
 b. improving GPU-AV.
 c. Just less bugs in the validation layers. I've reported some but haven't got around

 to others. Few but frustrating.
 d. Fix all erros,
 e. Today I see 240 issue form github
 f. We have still a lof of error for Vulkan Validation Layers
 g. Debug printf often crashes inside the validation layers"
 h. One is definitely printf not appearing consistently.
 i. This layer is an all or nothing deal and if it doesn't even support basic but

 essential vulkan 1.0 core functionality (like qfot) then i cant use it. I would like to
 use it though because i have a bug that looks like sync, but the layer is throwing a
 lot of false positives and i have to modify my code to not use the stuff i
 mentioned. I dont want to validate modified code, i want to validate the code i
 have to release to my users.

 7. Diagnosing failures
 a. use label names if available. provide hint/example how to fix them online.
 b. Better debugging of situations where my code is spec-compliant but not quite

 working
 c. Not much, maybe I would like a stack trace from a validation error but i think i can

 do it on my own
 8. Invest more in Validation layers
 9. I'm 100% supporting to tie feature-development with CTS and validation-development.
 10. The validation layers have helped immensely and a great resource! For debugging

 applications and the new GPU tools will come help greatly.
 11. they are great, keep it up!
 12. Keeping up the good work
 13. debugPrintf is also really useful for my use case.
 14. The documentation links, but this was just fixed!!! So no comment at this time
 15. Just thinking out loud: Resource tracking using pre-given strategies.
 16. Validation Layers could help in spotting usage of undefined/discarded images and

 buffers."

 LunarG 2025 Ecosystem Survey Results 35

 Please indicate which extensions you currently use or
 plan to use (check all that apply)

 LunarG Take-aways:
 1. Descriptor Indexing and Buffer Device Address remain popular and LunarG will continue

 to focus on GPU-AV validating them well.
 2. Surprised that Ray Tracing/Query is so popular. This is currently WIP to do a better job of

 validation.
 3. Shader Object didn't suddenly become "the way" to do things yet.
 4. Mesh Shading probably should get more attention
 5. Descriptor Buffers is more popular than expected.

 LunarG 2025 Ecosystem Survey Results 36

 Do you use GFXReconstruct?

 LunarG 2025 Ecosystem Survey Results 37

 Which version of GFXReconstruct do you use? (check all
 that apply)

 LunarG 2025 Ecosystem Survey Results 38

 How satisfied are you with the reliability and quality of
 GFXReconstruct?

 Comments (Especially if you are dissatisfied):
 1. it's a great tool but portability between different WSI-backends and gpu-vendors should

 improve. also there are many options already for a replay and can become tricky to get it
 right

 2. I used it rarely but it was helpful
 3. slowly improving
 4. Do not use
 5. Want to extract buffer and image contents after draws or dispatchés like in Renderdoc

 for CI purposes

 LunarG comment: GFXReconstruct ease of use could certainly improve. GFXReconstruct is
 actively being worked on as it is becoming the underlying engine for some important profiling
 and debugging tools and this is continuing to drive quality and feature completeness.

 What improvements or enhancements would you like to

 have added to GFXReconstruct (open ended)?

 LunarG 2025 Ecosystem Survey Results 39

 1. more things should 'just work' with less options
 2. The lack of a UI for this tool(s) has dissuaded me from using it, especially because it's

 not immediately clear what it provides over, for example, RenderDoc or Nsight Graphics.
 3. I plan to use it in the future, but never got around to it.
 4. Renderdoc like capture API
 5. Log call parametrs before executing the actual call so that we can see them when

 diagnosing driver crashes
 6. I think RayTracing/RayQuery needs polishing. Hard to say.
 7. Seems reliable. No complains.
 8. ability to begin capture after the application has been started. not sure if that's not

 already a thing.
 9. N/A, I don't use GFXR

 How important is a Vulkan to Metal translation layer (e.g.
 MoltenVK) for you?

 Open-Ended Feedback
 In the survey, there were additional opportunities to provide open-ended feedback via the
 following questions:

 LunarG 2025 Ecosystem Survey Results 40

 1. If you have used the VK_LAYER_LUNARG_crash_diagnostic layer, please provide any
 feedback you may have (open ended)

 2. What prevents you from being effective and productive while doing your Vulkan
 development? (open ended)

 3. Where would you like to see more investment in the Vulkan developer tools space?
 4. Is there anything else you would like to share?

 All of this open-ended feedback has been consolidated and grouped into the sections below.
 Comments were not removed, even if repeated or saying the same thing a different way.

 Vulkan on Apple Platforms

 1. The current situation with MoltenVK doing their own releases on their github page is
 confusing. I'm using those for macos but feel like the lunarg sdk releases should be the
 one and only way to get the sdk.

 a. LunarG comment: The releases done on the MoltenVK repository are the releases
 pulled into the Vulkan SDK. Users can choose to use the macOS SDK (and get
 those MoltenVK releases), or to use MoltenVK directly from the repository.

 2. "My christmas wishlist: - Ray queries (or even tracing) on macOS"
 3. much better support for MoltenVK (1.3 is not available yet)
 4. MoltenVK is a constant bottleneck always lagging behind what's available on Windows

 or even Linux. For that reason i have to make application design decisions that i dont
 want to make but have to because i require macOS support.

 5. I'm worried about the pace of development of MoltenVK, it still doesn't support version
 1.3 and I'm worried that it will take much longer to support ray tracing. To the point that
 I'm considering dropping Vulkan in favour of Metal, because iOS and iPadOS is a very
 important platform for me.

 6. Having to use the Xcode frame profile, since I have to export my VSCode CMake project
 as an Xcode one, configure it there and then debug it. This repeats when I made a
 change in the original project…

 a. But that is Apple's fault. I am very thankful for you guys providing MoltenVK.
 7. MoltenVK missing extension support for advanced features. Limited Rust SPIR-V library

 support
 8. Support of 1.3 in MoltenVK and ray tracing extensions
 9. MoltenVK ray tracing is needed for truly portable modern VK code.
 10. MoltenVK ray tracing
 11. Please try to maintain and put more into MoltenVK
 12. MoltenVK missing ray tracing support is a huge problem.
 13. Need more work on MoltenVK
 14. Fuller 1.3 support in MoltenVK. Ya'll have done an amazing job here already, and I

 understand that resources and funding are tight as it is. Also having people comfortable
 with both Metal and Vulkan I'm sure are not easy to find.

 LunarG 2025 Ecosystem Survey Results 41

 15. MoltenVK needs more investment

 LunarG comment: It is known that the current Vulkan on Metal solution (MoltenVK) hasn't been
 able to keep up with Vulkan as it progresses. For example, its support has not moved beyond
 Vulkan 1.2 and it hasn't become a conformant implementation. LunarG is investigating ways to
 help improve this situation.

 Crash Diagnostic Layer

 1. The layer is easy to use, to configure and provides useful feedback in many cases.
 2. I really like that there is such a tool!
 3. Useful but not yet the same level of information as e.g. Aftermath
 4. I generally haven’t found it to be useful. Crashes seem to be somewhere deeper in driver

 code that isn’t picked up.
 5. just recently became aware of it, will use it to narrow down future crashes
 6. I like it, altough in some cases I did not get much info in the dump (might be a

 configuration issue or a missing extension on my nvidia 4xxx gpu).
 7. Diagnostics are somewhat inconsistent
 8. It was functionally unusable the one time I tried it. My SDK is a few versions out of date,

 so maybe that has since changed.
 a. LunarG comment: For the 3 previous comments, earlier versions of the layer had

 these issues. They have since been fixed. Try it again!
 9. that seems to be newer; we use nvidia only aftermath:-(
 10. It caused issues on my driver. Haven't investigated yet.
 11. In my case most of the time if I screw something up I end up killing the driver entriely

 (nvidia) so i dont even try to use this one as it wouldnt catch anything i guess
 12. I have not had a device lost since the layer came out

 Inhibitors to being productive or effective during Vulkan App Development

 1. My Display Miniport Driver isn't developed enough to support a Vulkan client.
 2. nothing really or not Vulkan related :)
 3. Too many possible configurations to cover all devices
 4. Nothing!
 5. init a big graphic pipeline，and init lot of struct
 6. There's a lot of stuff that needs to be repeated in different ways in different places. An

 obvious example is pipeline layouts: once in API calls, once more in shader source, yet
 again in a material system. This is understandable, but since all of the reflection options
 are limited, it's difficult to just automate the problem away.

 7. Drivers on anything but windows.
 8. That Vulkan devices can suddenly be lost unreproducibly (VK_ERROR_DEVICE_LOST)

 even without a programming error on my side.

 LunarG 2025 Ecosystem Survey Results 42

 a. LunarG comment: Try using the Crash Diagnostic Layer (included in the Vulkan
 SDK or found at https://github.com/LunarG/CrashDiagnosticLayer

 9. AMD Vulkan Compute is a huge problem for us... we currently turn it off on Linux and on
 Integrated GPUs... we're still trying to figure out how to handle the issues... we would like
 to expand our server compute offerings but this is basically blocking lot of work.

 10. Invest more in AMD Vulkan Compute
 11. AMD Vulkan Compute:

 a. - works generally on Windows
 b. - has trouble on AMD Integrated GPUs on Windows
 c. - has trouble on all AMD GPUs on Linux

 12. I keep saying it but our big issue is we are having problems with Vulkan Compute on
 AMD Linux... I think it's driver problems on their end but it blocks lots of our plans.

 13. c/c++ itself
 14. Limited resources on some less frequently used extensions
 15. Shader Objects doesn't support raytracing + I would be happy if Shader Objects will get

 more performance optimizations.
 16. Has monolithic PSO - Metal/Direct3D12(may be LibGNM).
 17. Nvidia/amd differences
 18. gpu captures & replay, not smooth, specially when blocked by a single capture opened at

 a time.
 19. XCode.
 20. Productivity impacts due to experience/knowledge

 a. Lack of theorethical graphics knowledge
 b. My very limited knowledge
 c. Setting up a new project and synchronization
 d. Bugs in my code, mostly. Right now I have a bug where every other frame, one of

 my buffers (bound through BDA) is just... wrong. My atomic add adds to the
 wrong place in the buffer. Existing tools like RenderDoc and GPU-Assisted
 Validation haven't helped, running my code on Android just makes it crash on
 startup, I don't know where to go from here to debug it

 e. Not getting enough time to work on it..

 Shader Compiler, Languages and related Tools

 1. slang
 a. Ship with slang, and get perfect glsl to slang mappings as well as more

 information for developers switching.
 b. Invest more in slang
 c. I would like GLSL updates, or a stronger commitment to GLSL developers with

 slang. Currently its perfect for HLSL, but subpar for GLSL, which is the opposite
 of how a Khronos API should be. I get that most large code bases target HLSL,

 LunarG 2025 Ecosystem Survey Results 43

https://github.com/LunarG/CrashDiagnosticLayer

 but being a second class citizen because you didn't historically focus on
 Microsoft technologies is unfortunate.

 d. "Slang. It's an amazing language but there are compilation bugs, weird-looking
 SPIR-V generation, and all sorts of problems with reflection (ranging from an
 incomprehensible API that takes far too long to get to first ~triangle~ ""generated
 a pipeline layout by reflection"", to an inability to query assigned variable defaults,
 to all sorts of sharp edges when reflecting user attributes).

 e. GLSL is dated and slang adoption is still annoying.
 f. GLSL doesn't support rich annotations, and Slang's annotations are in theory

 good, but in practice this part of the Slang project is still pretty limited and buggy.
 g. Need to invest more in shader compilers (e.g. Slang)
 h. I'm the principal developer on SDL's new GPU API. Overall I'm really pleased with

 the state of Vulkan tooling right now. My only thought is that slang needs a clear
 path for laying out descriptor bindings. Our shader system requires a particular
 descriptor set layout and developers who try to use slang with SDL GPU run into
 this problem. I don't personally use slang but it's a frequent complaint that I see.

 i. I really dislike Slang and fact that HIP/Rocm and Opencl c++ don't compile to
 vulkan SpIR-V.

 j. It would help to have slangc be listed alongside dxc in the find Vulkan cmake for
 easier build system integration

 k. Someone really should make Rust bindings to Slang.
 2. GLSL

 a. Also GLSL has early support for all the new extensions but the language does not
 support useful modern features

 b. limitations of GLSL, poor integration of shading languages in the host language
 (e.g. for structs shared between host & device, need to write the definition twice,
 for shaders and for the host app)

 c. I need single header shader compilation libraries for runtime so glsl shader code
 could be loaded directly without needing to recompile them before outside the
 application

 3. DXC/HLSL
 a. DXC bugs and quirks.
 b. I need dxccompiler.so for Android, I still can't compile it.
 c. improve HLSL to spirv translation
 d. I need robust DXC support and bug fixes
 e. More investment needed here:

 i. Clang-HLSL, SPIR-V function calls and pointers
 ii. Clang-HLSL, SpIR-V function calls/pointers, forward progress.

 f. Clang-HLSL not having enough resources
 g. Lackluster development velocity of Clang-HLSL

 4. Shading languages being universally terrible.
 5. Invest more in SPIRV-cross

 LunarG 2025 Ecosystem Survey Results 44

 6. Uniform shader compiler to compile lot shader language to spir-v
 7. No function pointers or goto statements in SPIR-V, and lack of forward progress it

 guarantees
 8. Lack of goto/function pointers in SpIRv, and forward progress it guarantees.
 9. multiple shader languages: GLSL / HLSL / Slang
 10. Being forced to external tools for compiling shaders.
 11. Shader languages (is inhibiting my productivity and effectiveness)
 12. SPIR-V cross bugs
 13. SPIR-V Cross needs to be rewritten
 14. spirv-reflect could have feature parity with spirv-cross as linking spirv-cross just for

 reflection is a tad excessive
 15. Add direct and simple support for compiling shaders from source to the API.
 16. the lack of single-source programming environments similar to CUDA.
 17. Runtime shader compilation and linking to a library that's required for it. (CMake +

 FetchContent/CPM). Maybe I just haven't found a simple way to do that yet. Examples?
 18. SPIR-V debugging is very cumbersome. https://www.khronos.org/spirv/visualizer/ does

 not to that demand justice. It would be nice to have more aids, such as basic block
 grouping and better explanations about various referenced inputs, types, and structs.

 19. Invest more in Shader languages
 20. Need better shader languages
 21. Some more investment on spirv tools like spirv-link would be nice
 22. I'd like to see a shading language that integrates better with the host-side language (e.g.

 reuse struct definitions between shader & host code)
 23. what ever glsl or hlsl etc. all the shading language can transform to spir-v use uniform

 compiler.

 Tooling

 1. Vulkan development tools have been great and helped solve many issues!
 2. Debugging tools are not as useful/robust as dx12 equivalents
 3. RenderDoc

 a. Renderdoc not working with newest extensions.
 b. Being unable to use RenderDoc
 c. Validation and debugging tool support for descriptor buffers, especially

 RenderDoc.
 d. I think last year, I would have said tools like RenderDoc and NSight not catching

 up, but I think that's rapidly changing.
 e. RenderDoc also needs to support RT, or we need to embrace a better alternative

 more equipt to handle modern VK code.
 f. Improving RenderDoc (it's not a part of Kronos, but it should be!) to catch up with

 the latest additions to Vulkan.

 LunarG 2025 Ecosystem Survey Results 45

 g. Invest more in RenderDoc
 h. I am mostly fine with what is available. Maybe GPU debugging? But RenderDoc

 gets the job done for the most part.
 4. Profilers

 a. Lack of good cross-vendor profiling tools
 b. Profilers like RGP and other performancettools (RGA) that are easier to set up

 and more robust
 5. Device Lost

 a. Diagnosing device lost or fence timeouts.
 6. Shader debugging

 a. lack of good shader/device emulation/debugging
 b. Better shader debugging tools
 c. I hope there will be improvements to the shader debugging environment.

 especially for compute shaders.
 d. lack of shader/register level profiling tools for older hardware

 7. Bindings
 a. Official Rust bindings for Khronos side projects like KTX would be great.
 b. More support for Rust bindings,
 c. Funding/support for https://github.com/ash-rs/ash
 d. The Vulkano team needs some love.
 e. modern C++ support
 f. Official support for safer languages like Rust
 g. Need Official Rust bindings.
 h. Also, when creating tools, I think it's a mistake to provide these tools as c++

 libraries with no c interfaces. Vulkan is used in a lot of languages, not just C.
 Having to interop with C++ is extremely annoying, and could be avoided if helper
 libraries simply were made in plain ol C, or at least provided an option. As it
 stands we end up having to remake certain things like vkbootstrap in different
 langauges, even though those can provide value to people generally.

 8. GPU debugging (LunarG comment: To do good cross-GPU debuggers, the IHVs would
 need to expose GPU characteristics to the Vulkan API to enable such tools. This won't
 happen due to the proprietary nature of IHV GPUs. So GPU specific debuggers will be
 unique to each IHV).

 a. Lack of an actual GPU execution debugger like we have on the CPU. Nvidia
 recently released a beta debugger in this vein for Nsight Graphics, but naturally it
 only supports their GPUs.

 b. I want GPU analyzers for linux!
 c. GPU analyzers for linux
 d. lack of GPU debuggers
 e. Invest in GPU analyzers for linux
 f. Invest more in Debugging tools (the existing ones are awesome, but there's a gap

 for a real execution debugger).

 LunarG 2025 Ecosystem Survey Results 46

 g. There should be a single vendor independent debugging tool that should feature
 all features to debug all kinds of stuff: shader execution, rays, models, PCI and
 memory usage, basically mix of RenderDoc, NSight and RDP

 9. Vulkan Introspection Layer
 a. I found the Vulkan introspection Layer (https://github.com/nyorain/vil) a really

 convenient tool for real-time debugging.
 b. There is this Vulkan Introspection Layer (https://github.com/nyorain/vil) that is

 Very effective, as it provides real time debugging capabilities, and it also
 supports ray tracing (visualizing the acceleration structures). But its not that
 active in development and it has a few instability issues. Still its very good, Could
 Khronos help out in some way to develop this tool?

 c. Invest more in Vulkan Introspection Layer maintanance, (and potentially
 integration into vkconfig) (https://github.com/nyorain/vil)

 10. Video and compute debugging tools with no graphics pipeline
 11. Debugging applications that use advanced features (descriptor indexing, buffer

 references and ray tracing) is very hard through the lack of good cross platform tools
 12. Most time consuming issue is finding lost resources. When was a resource create,

 destroyed and handle reused. Could be automated in a layer....
 13. Doing compute shader debugging, it can be tedious at times thought debugPrintf helps
 14. tooling quality and out-of-dateness on fedora linux
 15. Tools and libraries that are largely unrelated to Vulkan but are necessary such as Visual

 Studio which is frequently being frustrating or figuring out libraries to do model loading
 16. Inabillity to emulate different devices and OSes
 17. Official (or recommended) tools that provide an abstraction over memory allocation,

 descriptor allocation, synchronization and device bootstrap.
 18. Better debuggers that can help when my code is technically spec-compliant but still

 buggy. I'd like an emphasis on multi-frame debugging, since a lot of modern rendering
 techniques use information from previous frames to inform the current frame.
 RenderDoc's UI could also use a bit of work, I constantly feel like I have to hunt through
 three or four separate tabs to get an idea of what my renderer is doing. Maybe a more
 visual representation of the data flow in my frame would help

 19. Software emulation of extensions
 20. would be nice to have a testing framework for lib developers where you can say

 ""apidump between these 2 points"" and then compare against a predefined dump of all
 the functions, structs and their values, extra points for running under mockicd so you
 don't need drivers or a device for a CI environment

 21. more investment in the gpu captures, gpu captures for compute (using renderdoc), never
 fun with vulkan as far as i've seen

 22. Areas where more investment would be useful:
 a. Invest more in game engines like Godot
 b. Invest more in device emulation
 c. profiling tools, examples, good practice examples

 LunarG 2025 Ecosystem Survey Results 47

 d. a cross-vendor/platform frame-debugger (like Renderdoc) or capture-tool with
 raytracing support and ability to visually debug raytring workloads, visualize
 Acceleration-structures (like e.g. nsight)

 e. Raytrace debugging (nsight sortof covers this on nvidia gpus. Also its partly
 ongoing in renderdoc, as it now can capture with raytracing enabled which is a
 huge step)

 f. Graphic debuggers.
 g. Single-source C++ programming environment similar to CUDA where I don't have

 to manage the boundary between CPU and GPU (in the process, eliminating the
 need for a shading language).

 h. It would also be awesome if Sascha's device registry (which is already
 indispensable) supported richer queries and maybe even cross-referenced itself
 with the Steam hardware survey or something like that so that it would be easier
 to answer ""what amount of compatibility am I giving up if I require feature X""
 type questions.

 i. Debug tooling
 j. I'm primarily working with headless (no surface) rendering and calculations,

 profiling tools are difficult, limited or even impossible to use in such scenario.
 k. I am missing a tool for showing the content of buffers and images in GPU

 memory during application debugging. I believe it could be implemented as a
 layer. That is the reason I asked one of my students at my university to try to
 make a prototype. He is implementing for me a Vulkan Debugging Tool
 (https://github.com/Vulkan-FIT/#vulkan-debugging-tool). He is expected to work
 one more year on it, but the prototype already tells me that it is possible. The idea
 is to step through the code in Microsoft Visual C++ and see in real time the
 content of buffers and images of the application being debugged. Feel free to
 contact me about this tool on peciva@fit.vut.cz .

 l. Conformence testing & Validation layers
 i. Both are good, but improvements here would benefit all."

 Samples

 1. More code samples
 2. Synchronization is very hard to understand. Fully working examples with complex cases

 should be available.
 3. update examples to vulkan-hpp.

 Tutorial

 1. I think it would be useful if the Vulkan Tutorial just used vkconfig for validation layers
 instead of enabling them in code.

 LunarG 2025 Ecosystem Survey Results 48

 a. Comment from the Khronos Vulkan Tutorial team: Adding this as an option to the
 programmatic layer setup is feasible. It will be investigated. See
 https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60

 2. "Vulkan Tutorial" using vkconfig instead of enabling layers in code.
 3. More tutorials on intermediate features. Mesh shaders, the different methods for

 descriptors, etc
 4. If you want to learn the basics, the Vulkan Tutorial is great. However, if you want to learn

 newer or advanced concepts, it's not always easy to find good materials. The
 specification is huge and hard to read; it'd be nice to have some more guides, tutorials, or
 materials that make learning easier.

 5. Good official tutorials and guides for Modern Vulkan Features. The spec is nice, but a
 written guide is a lot nicer introduction

 6. I think the most important thing is to make Vulkan more accessible. Vulkan can be a bit
 overwhelming even after completing the tutorial, and it'd be nice to have some more
 tutorials in a centralized way to get a bit more used to the API. Not only showing how I
 can make something work, like in a sample, but why should I use it this way. I'd love to
 see some more informal guides, like how I should do certain things, to make them
 performant. Videos can be good, and there are some great ones, but if I need something
 specific, I can't really search if it contains that thing, so I either watch the full 1-hour
 video or search for another material. But on the positive side, I can see that there are a
 lot of videos, and there is an effort to make it more accessible.

 7. I like the tutorials on youtube. I also took a tutorial on Udemy, by Galea. This stuff is
 really hard to learn by myself.

 8. More tutorials for beginners would have been nice.

 Documentation

 1. I need documentation and how the many extensions relate
 2. Fuller documentation and more beginner friendly tutorials/samples
 3. Vulkan is love! In general the documentation and best practices should reflect the latest

 version
 4. I very need spirv-reflect doc.
 5. spirv-reflect online doc like docs.vulkan.org
 6. I feel Vulkan is a very important project for the gfx community, but I fear big industry

 players will try to interfere with the viability of it all, just as they did with OpenGL - making
 the future uncertain for short, and in turn with consequences on the adoption of Vulkan
 by programmers.

 a. Therefore, thorough, open, user-friendly documentation (whatever the mileage of
 readers), could well be a powerful safe guard for the future of the API&toolchain.
 I'm saying this because I've noticed, in almost ten years of Vulkan, the ""official""
 documentation effort (beyond just specs) only sprung up relatively recently, it
 was a bit of a (pleasant) surprise, but also worrying to a certain degree."

 LunarG 2025 Ecosystem Survey Results 49

https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60

 7. like there to be more GLSL documentation that's specific to Vulkan. A lot of GLSL
 documentation is specific to OpenGL and there are things that apply to Vulkan and
 things that don't, which makes it more confusing. Sascha Willems' examples pertain
 more to the Vulkan API itself but not the GLSL side of things so much - even though
 there are some GLSL shaders. There's no GLSL-for-Vulkan documentation is what I think
 I'm trying to say. :]

 8. I feel I lack User guides as part of the Vulkan documentation, per-Vulkan version, as
 things apparently changed substantially between 1.0, 1.1, ... up to 1.4. Such guides
 should point clearly into best practices for a given version, and the overall
 direction/roadmap for Vulkan by Khronos (a bird's eye view). Same goes for extensions
 and stuff moved to core: I'd need a clear map of things.

 9. Not enough documentation is available which explains the vkspec, similar to the notes in
 the vkspec.

 10. not enough documentation
 11. The red book is terrible. Beyond Vulkan Tutorial, good reading material is quite rare
 12. Good extensive and easy documentation, preferably in tutorial format that is not just

 specification like but provides a story and takes you to a result through big picture and a
 complete story/context.

 13. Navigating the documentation could be easier. The new documentation website is a
 good improvement though.

 14. Specification load speed
 a. The Vulkan Documentation should be much easier to navigate - it shouldn't take a

 while to load and be one big huge document. It should be individual separate
 pages like the registry.

 b. Slow loading specs website
 c. Full online specification loading time is extremely slow. It's not an issue if you

 need to open the web page just once and keep it opened in your browser, but
 when you frequently jump to the full spec with the hash to a section through the
 hyperlinks from other pages, it's a painful experience.

 i. LunarG comment: If you were linking to the full online specification from a
 validation layer error message, the validation layer error messages now
 link to an Antora site version of the Vulkan specification and load quickly.
 This became available with SDK version 1.4.304.1

 15. Lack of a central "best practices" store for Vulkan techniques. I am constantly
 second-guessing myself when implementing basic features like async image uploading.

 16. Quality online documentation, the current system is hard to navigate
 17. Lack of optimisation recommandation inside the docs
 18. Low amounts of fleshed out documentation in comparison to OpenGL (previous

 toolchain) such as the vulkan docs being very barebones and most developers having to
 rely on the registry or third-party tutorials/codebases

 LunarG 2025 Ecosystem Survey Results 50

 19. I'm a professional gfx programmer in the Games industry (I work on d3d12), I know I can
 handle the learning curve for Vulkan fairly well (just starting down that road, for personal
 projects mostly) - but I fear getting bogged down in outdated tutorials, books and such."

 Vulkan API and Specification

 1. Happy with Vulkan
 a. Vulkan is pretty tight, yo.
 b. Thank you all for making and maintaining Vulkan. It's the best of both GL and

 D3D without all the garbage, and I'm elated that it exists.
 c. I am incredibly more productive than when I wrote OpenGL. The first steps are

 very hard, because of the API's explicitness inducing a lot of verbosity. After
 becoming more familiar with the API (and introducing abstraction layers in the
 framework I'm using), the workflow becomes both smooth and mechanical
 (syntactically similar across functionalities).

 d. Thank you for your hard work!!!
 e. "Thank you for Vulkan!
 f. We will improve our 3D graphics using Vulkan API
 g. i love vulkan, khronos, opengl,..i love you :)
 h. Vulkan forever, OpenGL must die as soon as possible"
 i. I'm super new, but I like vulkan so far.
 j. I can't really pinpoint something, as I have been quite comfortable with Vulkan

 lately. I think the roster of features that have been added to the core in 1.2 and
 1.3 improved Vulkan heavily.

 2. Not happy with Vulkan
 a. Vulkan is exactly the same as OpenGL, except with no sensible defaults and

 fewer features.
 b. Vulkan is garbage and is killing your organization
 c. Khronos prevents me from being productive and effective with my application

 development
 d. All Vulkan succeeds in doing is ensuring industry regulatory capture from larger

 developers by adding needless complexity to programming GPUs.
 e. The sooner it is abandoned in favor of separate, simpler, APIs for tiled and

 desktop class GPUs, the sooner we can get back to actually being productive
 again."

 f. Abandon the API, there is no fixing it.
 g. It's too late - I've moved to DX12
 h. Release OpenGL 5 and drop the failed Vulkan API.
 i. vulkan is annoying to use.
 j. Improve OpenGL instead.
 k. that's why im currently using OpenGL

 LunarG 2025 Ecosystem Survey Results 51

 3. Verbosity, complexity, and bloat
 a. Verbosity of the API (esp when just trying to explore new extensions/features),
 b. The verbosity & complexity of the API, and runtime pitfalls such as implicit layers.
 c. Legacy bloat in the Vulkan spec
 d. The lack of a standardized mid-level API is a major issue to independent

 developers who are not dedicated entirely to graphics programming. Vulkan is
 proving too complex for production use without dedicated engineers for it.

 e. I'dDespite having used most versions OpenGL and DirectX and currently have a
 reasonable Vulkan render back end, I think Vulkan is still too complex,
 unnecessarily complex for most developers. An option for automatic
 synchronization and simplified handling of things like SwapChains could help,
 even if optimal performance is sacrificed. I understand why one size cannot fit
 all. With more responsibilities than ever, the graphics programmers job never
 ends now.

 f. it was difficult to begin with, steep learning curve, but after a while-becomes
 challenging in a good way, i believe i am productive enough

 g. Lack of experience and know-how. Thinking about how to abstract things is
 getting easier with more experience.

 h. Image layout transitions are a bummer. For now I'm just transitioning images to
 IMAGE_LAYOUT_GENERAL for now, and when mobile becomes a higher priority
 I'll start thinking more about it.

 i. It is a little hard that there are multiple active ways to do similar things.
 i. - descriptor pools / buffers
 ii. - render pass / dynamic rendering
 iii. - pipelines / shader objects
 iv. - timeline / binary semaphores

 j. - storage buffers as function arguments
 k. - templates
 l. I hope vulkan can become more beginner friendly, without cutting back on the

 amount of boilerplate. I think the amount of granularity in setting up a renderer is
 great, but sometimes can go unexplained or left to a black box. I hope the docs
 can be filled out, registry made more friendly to beginners, maybe suggesting
 fixes or common mistakes made in either the validation layers or registry links,
 and make the roadmap more aggressive with its feature set.

 m. It is difficult to understand the correct usage of VkSubpassDependency. It's more
 difficult to understand depending on the situation like MSAA or subpass(input
 attachment).

 n. it is hard to deduce best practices, many examples for boilerplate but not many
 for practical uses, modern techniques allow simplified development but they are
 hard to find.

 o. I'm a beginner so my biggest problem is figuring out the correct way to do things.
 Knowing about things like synchronization2, the various maintenance extensions,

 LunarG 2025 Ecosystem Survey Results 52

 etc is a bit harder when leaning it all at once. You have to learn the old way, the
 new way and the reasons for the change..

 p. The amount of pNext structures making programming and navigating through
 the spec hard and unclear. The vulkan API is piling up extension after extension
 and this problem is becoming worse and worse.

 4. Feature requests
 a. Standardization of the VK_NV_ray_tracing_motion_blur extension, so it can be

 used on non-nvidia hardware
 b. We need multi-level bvh for ray tracing and get more feedback from bvh hits (e.g.

 diagnostics about how often parts of bvh are hit so we could stream in/out bvh
 data for massive scenes)

 c. I want Present timing on Windows and Direct Storage extension
 d. Invest more on unifying raytracing specification of vulkan.
 e. I am missing two things in Vulkan API:

 i. (1) - Indices are just 32-bit. It means they cannot be used for the indexing
 all the vertices in GPU memory. If they would be represented by 64-bit
 value, it could be much more general solution allowing for using it as
 pointer to the whole GPU memory. This would provide quite flexibility for
 CAD applications handling huge models with many parts scattered
 through the whole gpu memory. This is related to another problem: If
 indices are scattered through the whole gpu memory, I cannot submit
 batch of indirect command structs by a single
 vkCmdDrawIndexedIndirect call, because I have to update index buffer
 binding before processing of each indirect command struct. I would like
 to drop the idea of binding index buffer and to have pointer (or
 VkDeviceAddress) to the first index stored in the indirect command struct.
 This way, indices might be stored anywhere in gpu memory and I could
 easily make single vkCmdDrawIndexedIndirect call for one hundred of
 thousands indirect command structs as opposite of one hundred of
 thousands pairs of draw calls interleaved with vkCmdBindIndexBuffer
 calls. Even recording it is slow.

 ii. (2) - It would be so cool if I would not need to bind descriptors, but could
 access them directly by pointer. Something like the buffer_reference used
 in GLSL can do for direct memory access (without binding of buffers).

 f. Please make descriptor buffer extension core and focus on forcing vendors to
 develop drivers for older gpus(for example intel doesnt support vulkan on some
 not so old mobile gpus on windows)

 g. I would be happy if descriptor Buffer had promoted to API, please and more
 dynamism, but take into account and first place performance. More low-level
 control and less high-level abstractions. Developers are happy when they have
 more control how they managing bytes in memory :)

 LunarG 2025 Ecosystem Survey Results 53

 h. Timeline semaphores not being able to extend to swapchain synchronization is
 really a bummer. It means you cannot universally adopt them, which means an
 extra place for things to go wrong.

 i. Possibly a common abstraction for "work graphs", like a cross-vendor version of
 VK_AMDX_shader_enqueue

 5. Modernization/Deprecation
 a. Yes. Stop releasing 100s of extensions every single year. I work with Vulkan

 almost daily and even I can't keep up.
 b. Also, start deprecating stuff sooner rather than later. Implement the deprecated

 craft in some layer for backwards compatibility and clean the API."
 c. I am strongly in favour of a Vulkan 2.0 release that removes all legacy parts of

 the Vulkan API
 d. Vulkan is piling up on new features, that are replacing old patterns, and despite

 its good seeing the api getting more modern, at the same time it is making things
 more confusing. As an example see descriptor buffers, push descriptors and
 normal descriptor sets. Official guides still reference different patterns, and is
 unclear which ones are actually recommended nowadays. I think a Vulkan 2025
 guide is needed, illustrating the modern patterns which are recommended to be
 uses, assuming modern desktop hardware.

 e. Make Vulkan simpler, deprecate and remove, lots of controls are unnecessary
 and or could be simplified while leaving the more advanced door open

 6. Overall with 1.2 extensions and onward the developer experience has vastly improved.
 Adding more options to dynamic rendering is always helpful but extending what can be
 done on the GPU with more functions would be nice (for example providing a list of
 scissors and changing scissor state with a single draw indirect call would be a nice
 addition)

 7. Direct3D12, Metal has no compatibility for older API, and has success.
 8. Timeline semaphore support for swapchains
 9. 1. Bad API design

 a. - Legacy from OpenGL VkFrameBuffer. Direct3D12/Metal has no this abstraction
 at all.

 b. - VkPipelineLayout Direct3D12 has no this abstraction at all.
 c. - GLSL this Is poor choice for Vulkan. HLSL should be first language for Vulkan

 1.0 and later, instead of legacy GLSL
 d. - numeric binding for Vertex Atrributes instead of Semantic names like as in

 Direct3D12. We can create extension
 e. VK_EXT_HLSL_semantic, it similar for Direct3D12

 D3D12_INPUT_ELEMENT_DESC:
 f. typedef struct VkVertexInputElementDescEXT {
 g. const char* semanticName;
 h. uint32_t semanticIndex;
 i. VkFormat format;

 LunarG 2025 Ecosystem Survey Results 54

 j. uint32_t inputSlot;
 k. uint32_t alignedByteOffset;
 l. VkVertexInputRate inputSlotClass;
 m. uint32_t instanceDataStepRate;
 n. } VkVertexInputElementDesc;
 o.
 p. // VK_STRUCTURE_TYPE_INPUT_LAYOUT_DESC_EXT
 q. typedef struct VkInputLayoutDescEXT {
 r. VkStructureType sType;
 s. const void* pNext;
 t. const VkVertexInputElementDesc* pInputElementDescs;
 u. uint32_t numElements;
 v. };

 10. 2. Vulkan features
 a. - Where Tile Shading for Vulkan on Mobile Platform ? See Metal API
 b. - Where Mesh Shaders for Mobile platform ? see Apple A15 for iPhone 13 and

 later
 c. - When we will have Work Graph Shaders KHR, core ?

 https://github.com/KhronosGroup/Vulkan-Docs/blob/main/proposals/VK_AMDX
 _shader_enqueue.adoc

 11. 3 .4 Unnecessary extensions for legacy OpenGL compatibility
 a. VK_EXT_shader_objects - Again OpenGL legacy compatibility ? The modern

 successful Graphics API
 12. VK_EXT_provoking_vertex Again OpenGL legacy compatibility ?
 13. I'm still very new to it so mainly just learning the API. In particular, specifics about

 changing of approaches to solving problems from OpenGL to Vulkan that are more
 useful than a basic hello triangle. For example, migration from multi draw indirect calls
 to an equivalent Vulkan solution would be welcome.

 14. safer APIs

 Android

 1. Feature fragmentation across Android devices, especially our need for supporting years
 old devices without driver updates

 2. Driver bugs on some mobile devices
 3. More debug tools on mobile platforms
 4. Vulkan on Android

 a. Bad Driver support, Developing of OpenGL ES/Vulkan Drivers spend a lot of time
 for developers, we need to remove OpenGL ES’s native legacy drivers from
 Android by replacing Angle via Vulkan.

 LunarG 2025 Ecosystem Survey Results 55

 Miscellaneous

 1. I’m a little unsure how the arch Linux package works but I assume it uses the tarball or
 will quickly change so it should be fine

 2. Update arch packages to 1.4
 3. live debugging (i.e. not frame capture but debugging the live program, like nsight shader

 debugger, rocgdb)
 4. It would be nice if the OpenXR runtime and the VVL could (optionally, of course)

 ~conspire~ cooperate to mute the absurd amount of validation spam some of the XR
 runtimes generate. (I would say "make the XR vendors make their runtimes
 validation-clean, but I don't believe in fairy tales.)

 5. Improve the Loader-ICD interface. Vulkan's ability to support extensions is nice, but the
 D3D UMD is so much easier to implement.

 6. better vulkan wayland support
 7. More and more extensive/wider integration with various exiting libre/opensource

 graphics tools and programming tools
 8. Our current workaround is to have the server only GPU accelerate on Nvida, which

 defeats the purpose of Vulkan Compute. It's primary advantage is cross hardware, if you
 wanted Nvidia compute only why not use CUDA.

 9. Continue the good work
 10. Cute anime girl representation, a Vulkan-tan
 11. more cowbell
 12. I found the numbers of Vulkan Video talks disproportionately high at this year's

 Vulkanised
 13. Better support for older Linux distributions (with older GLIBC), e.g. we have to bundle an

 old glslangvalidator with our app to compile shaders on the fly.
 14. "As mentionned, I'm just starting my Vulkan journey, although I do work professionnally

 with d3d12, and I'm also an OpenGL old timer.
 15. The questtion about the important platform for the fututre was missing Linux/RISC-V, I

 see this one becoming very important in the future.
 16. "All I want is OpenCL 1.2 with triangle rasterisation and bytecode kernels.

 LunarG 2025 Ecosystem Survey Results 56

