
‭LunarG 2025 Ecosystem Survey Report‬

‭March 2025‬

‭Executive Summary‬
‭Methodology:‬

‭●‬ ‭The purpose of the ecosystem survey is to help guide provide priorities to LunarG while‬
‭developing the Vulkan SDK and many of the Vulkan Ecosystem developer tools.‬

‭●‬ ‭It was attempted to reach as many Vulkan developers as possible -- both SDK users and‬
‭non-SDK users. The survey was advertised on X, Reddit, LinkedIn, the Khronos Vulkan‬
‭slack channel, Vulkan Discord, and sent directly to 13,000+ recipients of the LunarG‬
‭Vulkan SDK mailing list. It was amplified by Khronos on their X account and newsletter‬
‭mailings as well.‬

‭●‬ ‭All comments from open-ended questions are included in this report, regardless if they‬
‭are repeated. This helps you see the frequency of certain types of feedback.‬

‭Some Highlights:‬
‭1.‬ ‭There were 279 respondents.‬
‭2.‬ ‭47% of the respondents use Vulkan for commercial purposes. 52% of the respondents‬

‭were self-studying Vulkan as part of a personal project or an Academic environment‬
‭(non-commercial).‬

‭3.‬ ‭72% of the respondents are regular, advanced, or expert Vulkan developers. 28% are‬
‭basic or beginner developers. Hence the feedback is coming from a more experienced‬
‭population.‬

‭4.‬ ‭This was the first year that we asked respondents which region (Americas, Europe, Asia)‬
‭they resided. 60% of the respondents resided in the European region.‬

‭5.‬ ‭WebGPU is becoming an important API for the future‬
‭6.‬ ‭ARM platforms (both Linux and Windows) will be important development environments‬

‭in the future.‬
‭7.‬ ‭slang (as a language and as a compiler) had a significant jump in popularity‬

‭a.‬ ‭2024: 3% of survey respondents. 2025: ~27% of respondents‬
‭8.‬ ‭Validation Layer Themes:‬

‭a.‬ ‭Improve error messages‬
‭b.‬ ‭Improve coverage‬
‭c.‬ ‭Improve performance‬

‭9.‬ ‭Still strong demand for improved Vulkan documentation and tutorials‬
‭10.‬‭Continued concern about complexity and verboseness of the Vulkan API‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭1‬

‭LunarG Actions for the year to come:‬
‭1.‬ ‭Deprecate the Ubuntu Packages. They will discontinue being updated by June of 2025.‬

‭LunarG is looking for ways to reduce the workload for each SDK release. It has been our‬
‭suspicion that the Ubuntu packages are nice to have but not critical. The handful of‬
‭users that indicated the Ubuntu packages were critical, cited the need to rework their CI‬
‭environment which relies upon package installation. It is very plausible to change these‬
‭CI environments to install the Linux tarball instead.‬

‭a.‬ ‭See if the freed resources enables a Linux on ARM pre-built tarball SDK‬
‭2.‬ ‭Continue validation layer focus on improving GPU-AV.‬

‭a.‬ ‭Getting more people to enable GPU-AV for more complete validation coverage‬
‭b.‬ ‭Performance‬
‭c.‬ ‭More VUID checks requiring validation on the GPU‬
‭d.‬ ‭Descriptor Indexing and Buffer Device Address are popular and LunarG will‬

‭continue to focus on GPU-AV validating them well.‬
‭e.‬ ‭Ray Tracing/Query is so popular. This is currently WIP to do a better job of‬

‭validation.‬
‭f.‬ ‭Mesh Shading probably should get more attention‬

‭3.‬ ‭Continue improvements to validation layer error messages‬
‭a.‬ ‭Note that with the 1.4.309.0 SDK, some more significant improvements were‬

‭made. (See the‬‭validation layer error messages document‬‭and‬‭SDK release notes‬
‭for detail)‬

‭4.‬ ‭Enhance vkconfig and Vulkan Loader to enable adding ICD to the list of available ICDs on‬
‭the system (e.g.: Lavapipe enablement for C.I. purpose)‬

‭5.‬ ‭Time permitting: Are there ways to get a Vulkan on Metal solution that can be Vulkan‬
‭conformant and keep up with Vulkan evolution?‬

‭a.‬ ‭It is known that the current Vulkan on Metal solution (MoltenVK) hasn't been able‬
‭to keep up with Vulkan as it progresses. For example, its support has not moved‬
‭beyond Vulkan 1.2 and it hasn't become a conformant implementation. With 30%‬
‭of the population indicating it is a "must have", ~35% indicating it would be nice‬
‭to have, the ecosystem has a gap in providing a good Vulkan on Metal solution.‬

‭b.‬ ‭LunarG is investigating ways to help improve this situation.‬
‭6.‬ ‭Time permitting: Investigate VK_LAYER_live_introspection as a tool for integration with‬

‭vkconfig/SDK‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭2‬

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/error_messages.md
https://vulkan.lunarg.com/doc/sdk/1.4.309.0master/windows/release_notes.html

‭LunarG 2025 Ecosystem Survey Report‬ ‭1‬
‭What type of Vulkan Developer are you?‬ ‭5‬
‭How experienced of a Vulkan Developer are you?‬ ‭5‬
‭In which Region do you reside?‬ ‭6‬
‭Your Vulkan development is for what type of industry (select all that apply)‬ ‭7‬
‭What are the targets of your Vulkan application? (check all that apply)‬ ‭8‬
‭Indicate the importance of the listed development environments (skip environments that are‬
‭not important)‬ ‭9‬
‭Do you use the Vulkan SDK?‬ ‭10‬
‭If the LunarG Ubuntu packages for SDK releases were removed, what would be your‬
‭response?‬ ‭11‬
‭How important are the following APIs for your development TODAY‬ ‭14‬
‭How important are the following APIs for your development IN THE FUTURE‬ ‭15‬
‭Which of the following Vulkan layers do you use? (answer choices: yes, no, don’t know‬
‭about it)‬ ‭16‬
‭Do you use the Vulkan Configurator (vkconfig)?‬ ‭17‬
‭Vulkan Configurator Open-Ended feedback‬ ‭17‬
‭What is your preferred shading language? Check all that apply‬ ‭20‬
‭What is your tool of choice for generating SPIR-V? Check all that apply‬ ‭21‬
‭What is your preferred tool for SPIR-V reflection? Check all that apply‬ ‭22‬
‭Do you use the Vulkan Profiles toolset?‬ ‭23‬
‭If you are using the Vulkan Profiles toolset, what are you using them for? (check all that‬
‭apply)‬ ‭24‬
‭When using the Vulkan Profiles toolset, what are the inhibitors for you to use them easily or‬
‭effectively?‬ ‭24‬
‭Do you use the Khronos Vulkan Validation Layer (VK_LAYER_KHRONOS_validation)?‬ ‭25‬
‭How often does the performance of the Validation Layers inhibit effective use of them?‬ ‭26‬
‭Do you use GPU Assisted Validation (GPU-AV, GPU-Assisted,‬
‭VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)‬ ‭27‬
‭Do you use Synchronization Validation‬
‭(VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT)‬ ‭28‬
‭How do you adjust settings for the Validation Layers? (check all that apply)‬ ‭29‬
‭Do you parse the messages in your own callback? (Check all that apply)‬ ‭30‬
‭Please indicate which extensions you currently use or plan to use (check all that apply)‬ ‭36‬
‭Do you use GFXReconstruct?‬ ‭37‬
‭Which version of GFXReconstruct do you use? (check all that apply)‬ ‭38‬
‭How satisfied are you with the reliability and quality of GFXReconstruct?‬ ‭39‬
‭How important is a Vulkan to Metal translation layer (e.g. MoltenVK) for you?‬ ‭40‬
‭Open-Ended Feedback‬ ‭40‬

‭Vulkan on Apple Platforms‬ ‭41‬
‭Crash Diagnostic Layer‬ ‭42‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭3‬

‭Inhibitors to being productive or effective during Vulkan App Development‬ ‭42‬
‭Shader Compiler, Languages and related Tools‬ ‭43‬
‭Tooling‬ ‭45‬
‭Samples‬ ‭48‬
‭Tutorial‬ ‭48‬
‭Documentation‬ ‭49‬
‭Vulkan API and Specification‬ ‭51‬
‭Android‬ ‭55‬
‭Miscellaneous‬ ‭56‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭4‬

‭What type of Vulkan Developer are you?‬

‭52.5% are self-study or academic‬
‭47.5% are using Vulkan for commercial purposes‬

‭How experienced of a Vulkan Developer are you?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭5‬

‭Of the population overall, 72% of the respondents had regular, advanced, or expert experience‬
‭with the Vulkan API. The survey respondents who were doing Vulkan development for‬
‭commercial purposes had more advanced or expert level experience with the Vulkan API.‬

‭In which Region do you reside?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭6‬

‭Your Vulkan development is for what type of industry‬
‭(select all that apply)‬

‭This question is asked to see if Vulkan is expanding into other industries. Compared with the‬
‭data from 2 years ago, there are no significant shifts.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭7‬

‭What are the targets of your Vulkan application? (check‬
‭all that apply)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭8‬

‭Indicate the importance of the listed development‬
‭environments (skip environments that are not important)‬

‭Windows on ARM for both Linux and Windows become more important than x64/x86.‬
‭Interesting…‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭9‬

‭Do you use the Vulkan SDK?‬

‭Which of the following Vulkan SDKs do you use? (check all‬

‭that apply)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭10‬

‭If the LunarG Ubuntu packages for SDK releases were‬
‭removed, what would be your response?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭11‬

‭LunarG is looking for ways to reduce the workload for each SDK release. It has been our‬
‭suspicion that the Ubuntu packages are nice to have but not critical. The handful of users that‬
‭indicated the Ubuntu packages were critical, cited the need to rework their CI environment which‬
‭relies upon package installation. It is very plausible to change these CI environments to install‬
‭the Linux tarball instead.‬

‭As such, LunarG will be deprecating the Ubuntu packages in the future.‬

‭What suggestions do you have for the Vulkan SDK?‬

‭(open-ended)‬
‭1.‬ ‭New SDK versions‬

‭a.‬ ‭Arm version please.‬
‭b.‬ ‭Nice to have Ubuntu ARM packages as well.‬
‭c.‬ ‭Vulkan sdk for linux arm‬

‭2.‬ ‭Installation‬
‭a.‬ ‭Provide an offline installer.‬
‭b.‬ ‭I would appreciate an info that if installing on mac and not in global system wide‬

‭install, it wont work really‬
‭i.‬ ‭LunarG comment: The SDK works fine without global installation. The two‬

‭draw backs are you have to run setup-env.sh from the terminal to set‬
‭environment variables to point to the SDK files, and you don't get a‬
‭system-wide ICD installed. Some developers will prefer one approach over‬
‭the other. We could attempt to put this information into a message during‬
‭installation to make it more obvious.‬

‭c.‬ ‭Ma‬‭ke it easy to pull the tarball from CI or scripts‬‭(no redirect on download page‬
‭etc)‬

‭d.‬ ‭Regarding question 8 and how to obtain the SDK, while I don't use ubuntu‬
‭packages, I do rely on the SDK being available in a package manager.‬

‭3.‬ ‭IDE‬
‭a.‬ ‭I would love to have first party plugins for GLSL for VS Code and maybe Rust‬

‭Rover. The plugins existing today suck immensely. Would be great if those‬
‭included #include syntax‬

‭b.‬ ‭Not having a single suitable interactive development environment having a c++‬
‭toolchain along with vulkan SDK and tools built in.‬

‭c.‬ ‭Please please do the GLSL plugins!!!‬
‭d.‬ ‭We need better extensions in VSCode for GLSL development.‬

‭4.‬ ‭SDK content additions‬
‭a.‬ ‭Include Renderdoc‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭12‬

‭b.‬ ‭Make Rust a first class citizen in the Vulcan SDK. It’s kind of obvious that it is the‬
‭future at this point. As far as I cab tell, Safety without no performance overhead‬
‭has become critical.‬

‭c.‬ ‭Having the Slang component in the SDK simplifies dev environment setup a lot,‬
‭but that's quite a lot of lag given how fast they're moving on bug fixes and‬
‭updates.It'd be nice if there was a "rerun the installer" or "replace this subfolder‬
‭with that tarball" process to refresh Slang in place.‬

‭d.‬ ‭Make installation of Vulkan samples an option.‬
‭e.‬ ‭Make it put a shortcut to the Vulkan Configurator on the user's desktop. I see a‬

‭lot of Vulkan beginners who just don't know about the Vulkan Configurator, and‬
‭making it more discoverable would help them‬

‭5.‬ ‭Make fish-compatible setup-env file‬
‭6.‬ ‭SDK is getting better and making our lives easier every year. :)‬
‭7.‬ ‭Very happy with the tools provided in the Vulkan SDK.‬
‭8.‬ ‭None this year. It's mostly been a pleasure to use.‬
‭9.‬ ‭I'm happy :)‬
‭10.‬‭Thanks for improving Vulkan! It is great!"‬
‭11.‬‭I appreciate the effort of creating and maintaining the SDK. Many thanks, especially for‬

‭vkconfig.‬
‭12.‬‭Have better support for windows 11.‬
‭13.‬‭You're doing great! Keep with the same pace!‬
‭14.‬‭Always appreciate the amount of work that is put in the ecosystem and the professional‬

‭and friendly contact with the Lunar-G people. Especially the last has been very useful to‬
‭me‬

‭15.‬‭Please keep it working on older Linux systems (older GLIBC), I cannot use the latest‬
‭SDKs on all my Linux systems.‬

‭16.‬‭Thank you for everything you've done. Both as a hobbyist developer for enabling me to‬
‭do graphics in a significantly more effective and pleasant manner than in OpenGL days‬
‭and as an user, for setting up the environment so software like dxvk and vkd3d-proton‬
‭can exist, letting me use Linux for gaming too.‬

‭17.‬‭More frequent updates, less codebase breaking changes in small releases, or at least‬
‭with more warning/guides to updating (e.g. vk::DispatchLoaderDynamic ->‬
‭vk::detail::DispatchLoaderDynamic)‬

‭18.‬‭Where is chucked vulkan spec?‬
‭19.‬‭Having a more easier high level framework as well, or at very least guidance on higher‬

‭level middleware that builds on top of Vulkan.‬
‭20.‬‭All I want is a tutorial on how to get Vulkan to work on my mac without XCode. I usually‬

‭use vim and tmux. Would be happy with VSCode. I need to be able to use a make file.‬
‭There's a lot of settings there.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭13‬

‭How important are the following APIs for your‬
‭development TODAY‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭14‬

‭How important are the following APIs for your‬
‭development IN THE FUTURE‬

‭As expected, webGPU will increase in importance in the future.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭15‬

‭Which of the following Vulkan layers do you use? (answer‬
‭choices: yes, no, don’t know about it)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭16‬

‭Do you use the Vulkan Configurator (vkconfig)?‬

‭Vulkan Configurator Open-Ended feedback‬
‭All open ended feedback is listed here, regardless if the same comment is said many times.‬

‭1.‬ ‭Usability‬
‭a.‬ ‭A bit more documentation on what all the checkboxes on the right mean would‬

‭be nice (maybe a right-click to go to a detailed description of what it catches), but‬
‭honestly I think it's fine as is.‬

‭i.‬ ‭LunarG comment: All the settings have tooltips in the application.‬
‭b.‬ ‭Detailed Documentation‬
‭c.‬ ‭The UI is very confusing‬
‭d.‬ ‭I find vkconfig weird to use. When I enable API I can never find where the dump‬

‭goes to half the time‬
‭e.‬ ‭Make sync validation more discoverable. The current right-hand sidebar of‬

‭options is great for advanced users but I worry that beginners get overwhelmed‬
‭by the options and don't know how to navigate them"‬

‭2.‬ ‭Happy‬
‭a.‬ ‭none, its great‬
‭b.‬ ‭Working great no requests currently‬
‭c.‬ ‭none, works as expected‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭17‬

‭d.‬ ‭Honestly, it's great.‬
‭e.‬ ‭None. It's performed all of my needs.‬
‭f.‬ ‭None, all previous suggestions have been implemented. <3‬
‭g.‬ ‭still need to get more familiar with vkconfig3, already seeing many usability‬

‭improvements and not missing anything atm‬
‭h.‬ ‭In-App documentation.‬

‭3.‬ ‭Quality/stability‬
‭a.‬ ‭Improve stability (it crashes when I try making a custom profile with‬

‭synchronization + validation).‬
‭b.‬ ‭I see some errors when I first start it up, every time.‬

‭".../Vulkan/RTSSVkLayer64.json is not a valid layer manifest", etc....‬
‭i.‬ ‭LunarG comment: This issue has been fixed in the 1.4.309.0 SDK:‬

‭https://github.com/LunarG/VulkanTools/issues/2285‬
‭c.‬ ‭If DPI changes (connecting and disconnecting external screen to laptop) vkconfig‬

‭GUI layout gets broken.‬
‭4.‬ ‭Enhancement Requests‬

‭a.‬ ‭Make some data searchable. For example, opening Vulkan Info, and selecting a‬
‭device, opens up a huge list of properties. It would be great to be able to search it‬
‭by typing a name.‬

‭i.‬ ‭LunarG comment: We have created a feature request in the github‬
‭repository for this enhancement.‬‭vkconfig: Add searchable‬‭diagnostic‬
‭#2281‬

‭b.‬ ‭Recompile with qt6‬
‭i.‬ ‭LunarG comment: This has been completed and is delivered in SDK‬

‭1.4.309.0 for the Linux tarball, Ubuntu packages, Windows on ARM SDK,‬
‭and macOS SDK. Qt6 support is coming soon for the Windows X64 SDK.‬

‭c.‬ ‭maybe build into vkconfig a one click way to use validation layers from github‬
‭(latest commit or specific) since there's build artifacts now could maybe even‬
‭download them‬

‭i.‬ ‭LunarG comment: This may be a nice ease of use enhancement to‬
‭vkconfig. An issue has been logged in the LunarG/VulkanTools repository‬
‭as a possible future enhancement.‬
‭https://github.com/LunarG/VulkanTools/issues/2283‬

‭d.‬ ‭I would like to be able to skip debug breaks for messages with certain IDs or‬
‭from certain sources, e.g. the Vulkan loader. I don't want to filter these messages,‬
‭just skip the debug breaks.‬

‭i.‬ ‭LunarG comment: Most likely a change is needed in the validation layer‬
‭and not vkconfig. A tracking issue has been created in the validation layer‬
‭repository:‬
‭https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭18‬

https://github.com/LunarG/VulkanTools/issues/2285
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2283
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650

‭e.‬ ‭While relatively niche (compared to the more common developers), more tools‬
‭for IHVs developing ICDs would be useful. Stuff like making it easier to handle‬
‭the variables for overriding which ICD is chosen.‬

‭i.‬ ‭LunarG comment: This is already under investigation to provide more‬
‭control over handing Vulkan drivers (e.g. lavapipe). Stay tuned for a future‬
‭enhancement.‬

‭5.‬ ‭Other‬
‭6.‬ ‭I mainly use it to configure applications that I run from IDE/terminal. I start‬

‭vkconfig set the config minimize it. Some times a day I reconfigure based on‬
‭needs. Tool does it job for me.‬

‭7.‬ ‭I hate that I need to have vkconfig open to get the GPU debug printf extension to‬
‭work. This seems to be a never ending issue. End users writing shaders should‬
‭be able to printf without needing to know intricate Vulkan configuration details.‬

‭a.‬ ‭LunarG comment: You can use environment variables or‬
‭VK_EXT_layer_settings to configure the validation layer as well, if you‬
‭don't want to open the Vulkan Configurator. See the SDK documentation:‬
‭https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_la‬
‭yer.html‬‭and‬
‭https://vulkan.lunarg.com/doc/view/latest/windows/layer_configuration.‬
‭html‬

‭8.‬ ‭Save settings while it's not active‬
‭a.‬ ‭LunarG comment: Vulkan Configurator already does this. If you have a‬

‭situation where that is not working, please submit an issue to‬
‭VulkanTools on vkconfig.‬

‭9.‬ ‭Add a default profile that enables almost everything‬
‭10.‬‭I also do not like VUIDs to be negative numbers. It might be hex number or dec‬

‭number but negative looks like that the programmer mistakenly wrote %i instead‬
‭of %u in the formatting string, or something like that. Not too serious problem.‬
‭But it might be easy improvement.‬

‭i.‬ ‭LunarG comment: This is an issue for the validation layer.‬
‭11.‬‭I'm too new to this to offer any sort of useful suggestion.‬
‭12.‬‭ability to emulate different devices with different drivers (preferably different‬

‭vendors and models), operating system as well‬
‭13.‬‭Specific overrides, like adding only a single layer on top of what was specified in‬

‭a program (e.g. adding VK_LAYER_shader_object to a program for a platform that‬
‭doesn’t support shader objects)‬

‭14.‬‭Make vkconfig more discoverable, perhaps with a desktop shortcut‬
‭a.‬ ‭LunarG comment. After SDK installation, the user is given the option to‬

‭start vkconfig. It is also in the Windows start menu.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭19‬

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

‭What is your preferred shading language? Check all that‬
‭apply‬

‭Compared to last year, slang has made a significant jump in shader language preference. In‬
‭2024 it was preferred by about 3% of the population vs. ~27% today.‬

‭Other, commercial developers:‬
‭1.‬ ‭NZSL‬
‭2.‬ ‭MLIR‬
‭3.‬ ‭zig‬
‭4.‬ ‭A subset of Rust itself‬
‭5.‬ ‭custom language‬
‭6.‬ ‭Nabla HLSL STL‬
‭7.‬ ‭Nabla HLSL STL‬
‭8.‬ ‭WGSL‬
‭9.‬ ‭Blender GLSL‬
‭10.‬‭We want to transition to slang‬
‭11.‬‭vcc‬
‭12.‬‭My custom language that compiles to SPIR-V‬
‭13.‬‭rust-gpu‬
‭14.‬‭Ruamoko (work in progress, not ready for others)‬
‭15.‬‭Vcc‬
‭16.‬‭Rust (rust-gpu)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭20‬

‭What is your tool of choice for generating SPIR-V? Check‬
‭all that apply‬

‭Slang made a significant jump in the preferred tool for generating spir-v. In 2024 it was at about‬
‭3% overall. This survey is showing it at about 27%.‬

‭Other, commercial developers:‬
‭1.‬ ‭NZSL‬
‭2.‬ ‭proprietary translation tool‬
‭3.‬ ‭MLIR‬
‭4.‬ ‭naga‬
‭5.‬ ‭Custom‬
‭6.‬ ‭Naga‬
‭7.‬ ‭custom generator‬
‭8.‬ ‭Clang‬
‭9.‬ ‭Clang‬
‭10.‬‭naga (note: NAGA is a shader translator and validator. Part of the wgpu project)‬
‭11.‬‭vcc‬
‭12.‬‭Naga (Rust)‬
‭13.‬‭qfcc (quakeforge, wip)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭21‬

‭14.‬‭Vcc‬
‭15.‬‭embedded shaderc into my app‬
‭16.‬‭rust-gpu‬

‭What is your preferred tool for SPIR-V reflection? Check‬
‭all that apply‬

‭There are multiple reflection tools available. The purpose of this question was to see if there‬
‭was an obvious tool that wasn't being used. Evidently not.‬

‭Other category:‬
‭1.‬ ‭NZSL‬
‭2.‬ ‭I don't use SPIR-V reflection‬
‭3.‬ ‭N/A‬
‭4.‬ ‭I don't use reflection‬
‭5.‬ ‭RenderDoc‬
‭6.‬ ‭SPIRV-reflect sucks‬
‭7.‬ ‭Naga‬
‭8.‬ ‭not needed‬
‭9.‬ ‭none.‬
‭10.‬‭unfortunately not used yet.‬
‭11.‬‭spirv-tools‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭22‬

‭12.‬‭The available SPIR-V reflection tools are either too cumbersome, complicated, or lack‬
‭features I need, so I wrote my own.‬

‭13.‬‭We want to transition so slang (but not active yet)‬
‭14.‬‭rspirv (rust crate)‬
‭15.‬‭Hardcoded‬
‭16.‬‭https://docs.rs/spirq/latest/spirq/‬
‭17.‬‭I roll my own‬
‭18.‬‭parsing the bytecode in C‬
‭19.‬‭Custom library‬
‭20.‬‭spirv-reflect‬
‭21.‬‭I don't use reflection for now‬

‭Do you use the Vulkan Profiles toolset?‬

‭Similar rates of usage as the previous year.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭23‬

‭If you are using the Vulkan Profiles toolset, what are you‬
‭using them for? (check all that apply)‬

‭There were no "other" usages of the Profiles toolset listed by survey respondents. So the Profiles‬
‭toolset is being used for the expected use cases.‬

‭When using the Vulkan Profiles toolset, what are the‬
‭inhibitors for you to use them easily or effectively?‬

‭1.‬ ‭Can't scrape large amounts of GPU reports from gpuinfo.org‬
‭a.‬ ‭LunarG comment: There is an API to query gpuinfo.org documented here:‬

‭https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.m‬
‭d‬

‭2.‬ ‭No changes needed that I could think off‬
‭3.‬ ‭Build environment must support the instance extensions to have the profile included in‬

‭the binary.‬
‭a.‬ ‭LunarG comment: To support this would require some significant changes to the‬

‭Vulkan Loader. This was evaluated and determined that it would not be pursued‬
‭because it would be a breaking change (can't break compatibility until a 2.0‬
‭release).‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭24‬

https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md
https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md

‭4.‬ ‭No formal specification like Vulkan's vk.xml, this makes generating a Rust wrapper have‬
‭to deal with parsing C, or manual as I currently do it.‬

‭5.‬ ‭How restrictive the extension capabilities are‬
‭6.‬ ‭Invest more in the Vulkan Profiles Library‬
‭7.‬ ‭More investment in the Vulkan Profiles Library, such as formal specification with a .xml‬

‭to match that of Vulkan.‬

‭Do you use the Khronos Vulkan Validation Layer‬
‭(VK_LAYER_KHRONOS_validation)?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭25‬

‭How often does the performance of the Validation Layers‬
‭inhibit effective use of them?‬

‭LunarG comment: Similar to last year. Those who are impacted by the performance of the‬
‭validation layer are commercial developers and the performance impact is not always there.‬
‭Most likely when using GPU-AV and synchronization validation is when the performance hit is‬
‭observed.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭26‬

‭Do you use GPU Assisted Validation (GPU-AV,‬
‭GPU-Assisted,‬
‭VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)‬

‭Comments about why they are not using GPU-AV:‬
‭1.‬ ‭Didn't try yet‬
‭2.‬ ‭but I intend too very soon‬
‭3.‬ ‭Going to start after this conference‬
‭4.‬ ‭I've had a couple issues with it causing crashing and it causes an unacceptable‬

‭performance impact. Often tools like renderdoc or NVIDIA Aftermath are enough for my‬
‭use cases‬

‭5.‬ ‭-‬
‭6.‬ ‭Far too slow‬
‭7.‬ ‭Tried to have our test suite run with it, it was too slow.‬
‭8.‬ ‭every few releases it will crash or blackscreens my app, when it does work frame times‬

‭are horrible so I tend to avoid it unless something is really wrong‬
‭9.‬ ‭Last time I used it, it reported false positives and introduced GPU crashes that were not‬

‭present without it‬
‭10.‬‭Last time I checked it wasn't checking out of bounds accesses to storage buffers‬
‭11.‬‭Causes the Nvidia driver to crash - but i haven't tested with 572.16‬

‭LunarG comment: With more validation moving to the GPU, for developers to get a fuller‬
‭validation coverage, they really need to be enabling GPU-AV. GPU-AV is still under active‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭27‬

‭development within LunarG and we are eager for you to submit issues. Our goal is to improve‬
‭coverage and performance to make it usable most of the time.‬

‭Do you use Synchronization Validation‬
‭(VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION‬
‭_VALIDATION_EXT)‬

‭"Here's why not" comments:‬
‭1.‬ ‭I'm scared of what it might tell us. Ignorance is bliss. Also, using it on Android/iOS‬

‭through a MAUI project is cumbersome.‬
‭2.‬ ‭I usually don’t have large sets of command buffers which need intricate synchronizing‬
‭3.‬ ‭It doesn't work for timeline semaphores.‬

‭a.‬ ‭LunarG comment: Synchronization validation for timeline semaphores was‬
‭completed in 2024. Is there an issue with it or is this statement made because‬
‭the user had not yet updated to a version of the SDK or validation layer that‬
‭provides support?‬

‭4.‬ ‭It's incomplete. Has too many false positives. Reporting issues results in several months‬
‭of waiting before a non-fix is made.‬

‭a.‬ ‭LunarG comment: Somewhere last year we started to follow a policy of‬
‭false-positive free behavior. Some functionality was disabled that causes‬
‭false-positives, some things were fixed, some false-positive friendly features‬
‭need to be turned on manually and are marked as heuristic. We are pretty serious‬
‭about keeping it this way and currently we are not aware about active‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭28‬

‭false-positives (but there could be some). Please open issues because that's‬
‭something we care about.‬

‭b.‬ ‭LunarG comment: Regression defects are given the highest priority before‬
‭working on new validation. If any regression is detected, please submit a github‬
‭issue indicating it was a regression.‬

‭5.‬ ‭I find that it reports on many things that I see as perfectly valid and work across NVIDIA‬
‭and AMD without issues‬

‭a.‬ ‭LunarG comment: Yes, if you know how specific hardware works it might be valid‬
‭for that hardware but still be a violation of the Vulkan spec and the validation‬
‭checks against the spec. It's fine to violate spec in production environments‬
‭when you know what you are doing. It is also possible that for timing purposes‬
‭you are getting lucky.‬

‭6.‬ ‭My application skips synchronization on purpose and this layer will complain‬

‭How do you adjust settings for the Validation Layers?‬
‭(check all that apply)‬

‭Other comments:‬
‭1.‬ ‭or VkInstanceCreateInfo‬
‭2.‬ ‭Ignore false warnings from code‬
‭3.‬ ‭I will use VK_EXT_layer_settings inside Vulkan code in the future‬
‭4.‬ ‭I haven't had a need to, but I'm aware of the vkconfig if I need to‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭29‬

‭LunarG Take-aways:‬
‭1.‬ ‭We still need to support the vk_layer_setting.txt file‬
‭2.‬ ‭Glad to know that vkconfig is the true majority‬
‭3.‬ ‭People do use settings mostly (This is good!)‬
‭4.‬ ‭There are still a good number of people (about 25%) who don't use settings (or not‬

‭aware of them) so the "out-of-the-box" needs to still be a good experience and we may‬
‭need to do more promotion of the value of using settings.‬

‭Do you parse the messages in your own callback? (Check‬
‭all that apply)‬

‭Other comments:‬
‭1.‬ ‭I regex out the verbose debug message text, though it seems to frequently change and‬

‭break.‬
‭a.‬ ‭LunarG comment: There is now a JSON format that they can turn on (as of the‬

‭1.4.309.0 SDK) and using that, likely no need to do a regex and can ensure the‬
‭JSON schema will not break in the future‬

‭2.‬ ‭I pass them to my logging framework.‬
‭3.‬ ‭Own logging system with partial parsing‬
‭4.‬ ‭I run them through a custom logging system.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭30‬

‭5.‬ ‭I have my own logging utilities, but I don't parse anything, aside from the occasional‬
‭string search to remove redundant errors.‬

‭6.‬ ‭I use the log callback to rouge the log messages into my own logger, which both prints‬
‭them to a file and to stdout‬

‭7.‬ ‭I forward the messages to our logging system‬
‭8.‬ ‭Basic Windows OutputDebugStringA callback‬
‭9.‬ ‭I don't parse the messages, just read them. I do check for absence of‬

‭validation-warnings/errors in unit/functional tests though‬
‭10.‬‭We record the messages in our app's log.‬
‭11.‬‭I filter messages.‬
‭12.‬‭I gather the output and feed it into my regression testing system‬
‭13.‬‭set breakpoints etc.‬
‭14.‬‭Redirect between stdout and OutputDebugString as appropriate (Windows)‬
‭15.‬‭In unit tests, they are logged in a file, when the application is running, they are both‬

‭written to stdout and to a log file.‬
‭16.‬‭Yes. To ignore false positives.‬
‭17.‬‭I ignore certain errors instead of terminating my App‬
‭18.‬‭I log it as formatted output so I can see what the message, messageId and object(s) are‬

‭(etc.)‬
‭19.‬‭I use trasnlation to log file(for All Platforms) + stderr for Desktop Unix and‬

‭OutputDebugString Windows‬
‭20.‬‭simply print to stderr and exit(1)‬
‭21.‬‭I log to stdout and raise SIGTRAP or debug break‬

‭LunarG comment: Wow. Over half of the people use the default format. A change was just made‬
‭in the validation layers that will be delivered in the 1.4.309.0 SDK that makes improvements to‬
‭this format.‬

‭How could the validation layers be improved?‬

‭(Open-ended)‬
‭All open ended feedback is listed here, regardless if the same comment is said many times.‬

‭1.‬ ‭More/better/timely coverage:‬
‭a.‬ ‭better & more complete validation layer support‬
‭b.‬ ‭adding more VUID coverage‬
‭c.‬ ‭More checks, obviously.‬
‭d.‬ ‭Occasionally the lack of validation for some parts of the API.‬
‭e.‬ ‭GPU assisted validation doesn't check all access hazards.‬
‭f.‬ ‭More video validation layers‬
‭g.‬ ‭More validation for VK 1.3 and 1.4 features and extensions.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭31‬

‭i.‬ ‭LunarG comment: Validation for 1.3 and 1.4 is complete. New extensions‬
‭are validated shortly after public release.‬

‭h.‬ ‭More ray tracing validation coverage‬
‭i.‬ ‭LunarG comment: All of the CPU based validation for ray tracing is‬

‭complete. There is a lot of validation for ray tracing that must be done on‬
‭the GPU. Here is a tracking issue for that work:‬
‭https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446‬

‭i.‬ ‭Timeline semaphores and queue family transfers‬
‭i.‬ ‭LunarG comment: Synchronization validation of timeline semaphores was‬

‭completed as of the 1.3.296.0 SDK‬
‭j.‬ ‭The validation layer's don't work with timeline semaphores.‬

‭i.‬ ‭LunarG comment: Synchronization validation of timeline semaphores was‬
‭completed as of the 1.3.296.0 SDK‬

‭k.‬ ‭Better support for descriptor indexing and descriptor buffers.‬
‭l.‬ ‭New extensions are not that important for me, but completing the basis is.‬
‭m.‬ ‭have validation-layer coverage for new features as early as possible‬
‭n.‬ ‭Maybe more validation coverage? Validation layers are the best tool of all,‬

‭probably. Improving them is very useful!‬
‭o.‬ ‭better sync and oob access validation when buffer device addresses are involved‬
‭p.‬ ‭Fewer false positives. These practically force you to use gigabarriers for‬

‭everything if you use bindless, otherwise you get worthless GPU-AV.‬
‭q.‬ ‭Synchronization validation does not catch some errors.‬
‭r.‬ ‭GPU assisted validation needs some love or at least refresh the ecosystem's‬

‭memory on what checks are implemented and what checks are missing.‬
‭i.‬ ‭LunarG comment: Agreed. And GPU-AV validation is currently a top‬

‭priority at LunarG.‬
‭s.‬ ‭Acceleration structure, shader binding table should be able to detect that they are‬

‭not created correctly‬
‭t.‬ ‭More synchronization validation‬
‭u.‬ ‭Focus on HLSL and GPU assisted validation since most things move to GPU‬

‭driven‬
‭v.‬ ‭Debugger support for descriptor buffers‬

‭2.‬ ‭Performance:‬
‭a.‬ ‭When I enable debugPrintfEXT, the fps of my app drops a lot. I hope that the fps‬

‭will not drop even if I enable debugPrintfEXT.‬
‭i.‬ ‭LunarG comment: The 1.4.309.0 SDK should be faster now since we now‬

‭only do work if the app has printf. If the user is not wrapping their‬
‭debugPrintfEXT with a condition to only print once, and they are printing a‬
‭value for a fragment shader that is running a million times, that will be‬
‭slow as you are trying to print a million times‬

‭b.‬ ‭Faster GPU Assisted Validation‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭32‬

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446

‭c.‬ ‭Less performance overhead.‬
‭d.‬ ‭Improved performance‬
‭e.‬ ‭perf‬
‭f.‬ ‭more performance‬
‭g.‬ ‭just being faster in general‬
‭h.‬ ‭improve performance.‬
‭i.‬ ‭Performance of the validations layers‬
‭j.‬ ‭1000x synchronization validation layer.‬

‭3.‬ ‭Error messages:‬
‭a.‬ ‭The information provided should be more precise‬
‭b.‬ ‭The validation layers should be more consistent and provide better information‬

‭for debugging.‬
‭c.‬ ‭provide a mory readable and clean format output.‬
‭d.‬ ‭Make errors more readable?‬
‭e.‬ ‭Clearer more user-friendly messages‬
‭f.‬ ‭Continue improving error messages.‬
‭g.‬ ‭I think they're fine, though to someone relatively new, it seems verbose and‬

‭probably too "spec"-y. I think I've gotten used to parsing it in my head and‬
‭understanding where I messed up.‬

‭h.‬ ‭If their error handling were more readable…‬
‭i.‬ ‭Improved formatting of error messages.‬
‭j.‬ ‭reasonable format for printing and maybe structure (eg, json)‬
‭k.‬ ‭Better readability, or maybe a UI you can use to "inspect" the errors better‬
‭l.‬ ‭Cleaner error messages‬
‭m.‬ ‭Readability of error messages could be improved‬
‭n.‬ ‭More human-readable, maybe suggesting fixes in the registry or validation‬

‭message itself‬
‭o.‬ ‭Validation errors are hard to read‬

‭i.‬ ‭LunarG comment: In response to all the comments above, the 1.4.309.0‬
‭SDK will have a cleaner format. There is also an option added to report‬
‭JSON and then the user can format how they find it best for them.‬

‭p.‬ ‭Let the user specify enough information to report errors sooner (e.g. in cases‬
‭where there is just one command buffer being recorded per frame and it runs‬
‭sequentially). Getting an error when you submit and not being able to trace where‬
‭it came from sucks. Alternatively, allow the user to place breadcrumbs and report‬
‭the most recent breadcrumb executed in the message."‬

‭i.‬ ‭LunarG comment: At the 2025 Vulkanised that took place in February‬
‭2025, Spencer Fricke gave a presentation about debugging your GPU‬
‭workflow. The presentation is here:‬
‭https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spe‬
‭ncer-Fricke-LunarG.pdf‬‭Starting around slide 40 you‬‭can find specific‬
‭information about vkCmdBeginDebugUtilsLabelEXT.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭33‬

https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf
https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf

‭q.‬ ‭I do not understand how to parse synchronization layer messages and correlate‬
‭all the data they provide with the API dump output.‬

‭r.‬ ‭sync validation messages read like sacred texts you need to journey up to the‬
‭wise one to decypher, generally finding out which cmds are involved is more‬
‭painful than it should be‬

‭s.‬ ‭More sync error info‬
‭t.‬ ‭Better validation error output for sync errors, they feel hard to track down‬

‭i.‬ ‭LunarG comment: With the 1.4.309.0 SDK, improvements have been made‬
‭to the synchronization validation error messages to make them human‬
‭readable.‬

‭u.‬ ‭Debug message from VK_KHR_DEBUG_UTILS_EXTENSION_NAME was hard to‬
‭read, maybe it should be multiline.‬

‭v.‬ ‭The feedback from the validation layer is still confusing and not accurate enough.‬
‭At the end of last year, we spent a month finding a trivial error just because it‬
‭occasionally showed up in the validation layers.‬

‭4.‬ ‭Best Practices‬
‭a.‬ ‭More performance checks‬
‭b.‬ ‭would be interesting if developer had received "tips" what can be improved in API‬

‭calling for optimal usage.‬
‭5.‬ ‭Configuration‬

‭a.‬ ‭Better documentation for the validation layers and how to work with them.‬
‭i.‬ ‭LunarG comment: How to configure the validation layers is fully‬

‭documented here::‬
‭1.‬ ‭https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/‬

‭main/docs/settings.md‬
‭ii.‬ ‭Your comment made me realize that the same documentation should be‬

‭available in the SDK documentation and currently is not there. This will be‬
‭fixed in the 1.4.309.0 SDK‬

‭b.‬ ‭Somehow more aggressive defaults without the use of environment variables or‬
‭vkconfig‬

‭i.‬ ‭LunarG Comment: As of the 1.4.309.0 SDK, useful warnings that were not‬
‭on by default will now be enabled by default.‬

‭c.‬ ‭It is very complex to obtain and install for mobile device emulators‬
‭d.‬ ‭more stuff enabled ootb,‬
‭e.‬ ‭Make the debug printf layer work well without vkconfig, eg by exposing all‬

‭options through extensions/flags in the API that an engine can directly work with.‬
‭i.‬ ‭LunarG comment: There is now a `VK_LAYER_PRINTF_ONLY_PRESET`‬

‭environment variable that can be used to quickly turn it on without‬
‭vkconfig (also can be set through the API with VK_EXT_layer_settings)‬

‭f.‬ ‭I have found 3 different ways to configure validation layers and none of them‬
‭seem to work with rust/vulkanalia.‬

‭g.‬ ‭more modern interface, simpler integratrion‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭34‬

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md

‭h.‬ ‭The BestPractices-specialuse-extension warning for debug_utils is shown on a‬
‭debug build. It should only show on a release build otherwise people will simply‬
‭filter it out which defeats the purpose and adds extra work.‬

‭i.‬ ‭If it cannot be determined whether an application is running in release or debug I‬
‭do not think this is a proper validation‬

‭j.‬ ‭better integration with IDEs‬
‭6.‬ ‭Quality/bugs‬

‭a.‬ ‭Focus on validation layers, make them perfect‬
‭b.‬ ‭improving GPU-AV.‬
‭c.‬ ‭Just less bugs in the validation layers. I've reported some but haven't got around‬

‭to others. Few but frustrating.‬
‭d.‬ ‭Fix all erros,‬
‭e.‬ ‭Today I see 240 issue form github‬
‭f.‬ ‭We have still a lof of error for Vulkan Validation Layers‬
‭g.‬ ‭Debug printf often crashes inside the validation layers"‬
‭h.‬ ‭One is definitely printf not appearing consistently.‬
‭i.‬ ‭This layer is an all or nothing deal and if it doesn't even support basic but‬

‭essential vulkan 1.0 core functionality (like qfot) then i cant use it. I would like to‬
‭use it though because i have a bug that looks like sync, but the layer is throwing a‬
‭lot of false positives and i have to modify my code to not use the stuff i‬
‭mentioned. I dont want to validate modified code, i want to validate the code i‬
‭have to release to my users.‬

‭7.‬ ‭Diagnosing failures‬
‭a.‬ ‭use label names if available. provide hint/example how to fix them online.‬
‭b.‬ ‭Better debugging of situations where my code is spec-compliant but not quite‬

‭working‬
‭c.‬ ‭Not much, maybe I would like a stack trace from a validation error but i think i can‬

‭do it on my own‬
‭8.‬ ‭Invest more in Validation layers‬
‭9.‬ ‭I'm 100% supporting to tie feature-development with CTS and validation-development.‬
‭10.‬‭The validation layers have helped immensely and a great resource! For debugging‬

‭applications and the new GPU tools will come help greatly.‬
‭11.‬‭they are great, keep it up!‬
‭12.‬‭Keeping up the good work‬
‭13.‬‭debugPrintf is also really useful for my use case.‬
‭14.‬‭The documentation links, but this was just fixed!!! So no comment at this time‬
‭15.‬‭Just thinking out loud: Resource tracking using pre-given strategies.‬
‭16.‬‭Validation Layers could help in spotting usage of undefined/discarded images and‬

‭buffers."‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭35‬

‭Please indicate which extensions you currently use or‬
‭plan to use (check all that apply)‬

‭LunarG Take-aways:‬
‭1.‬ ‭Descriptor Indexing and Buffer Device Address remain popular and LunarG will continue‬

‭to focus on GPU-AV validating them well.‬
‭2.‬ ‭Surprised that Ray Tracing/Query is so popular. This is currently WIP to do a better job of‬

‭validation.‬
‭3.‬ ‭Shader Object didn't suddenly become "the way" to do things yet.‬
‭4.‬ ‭Mesh Shading probably should get more attention‬
‭5.‬ ‭Descriptor Buffers is more popular than expected.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭36‬

‭Do you use GFXReconstruct?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭37‬

‭Which version of GFXReconstruct do you use? (check all‬
‭that apply)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭38‬

‭How satisfied are you with the reliability and quality of‬
‭GFXReconstruct?‬

‭Comments (Especially if you are dissatisfied):‬
‭1.‬ ‭it's a great tool but portability between different WSI-backends and gpu-vendors should‬

‭improve. also there are many options already for a replay and can become tricky to get it‬
‭right‬

‭2.‬ ‭I used it rarely but it was helpful‬
‭3.‬ ‭slowly improving‬
‭4.‬ ‭Do not use‬
‭5.‬ ‭Want to extract buffer and image contents after draws or dispatchés like in Renderdoc‬

‭for CI purposes‬

‭LunarG comment: GFXReconstruct ease of use could certainly improve. GFXReconstruct is‬
‭actively being worked on as it is becoming the underlying engine for some important profiling‬
‭and debugging tools and this is continuing to drive quality and feature completeness.‬

‭What improvements or enhancements would you like to‬

‭have added to GFXReconstruct (open ended)?‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭39‬

‭1.‬ ‭more things should 'just work' with less options‬
‭2.‬ ‭The lack of a UI for this tool(s) has dissuaded me from using it, especially because it's‬

‭not immediately clear what it provides over, for example, RenderDoc or Nsight Graphics.‬
‭3.‬ ‭I plan to use it in the future, but never got around to it.‬
‭4.‬ ‭Renderdoc like capture API‬
‭5.‬ ‭Log call parametrs before executing the actual call so that we can see them when‬

‭diagnosing driver crashes‬
‭6.‬ ‭I think RayTracing/RayQuery needs polishing. Hard to say.‬
‭7.‬ ‭Seems reliable. No complains.‬
‭8.‬ ‭ability to begin capture after the application has been started. not sure if that's not‬

‭already a thing.‬
‭9.‬ ‭N/A, I don't use GFXR‬

‭How important is a Vulkan to Metal translation layer (e.g.‬
‭MoltenVK) for you?‬

‭Open-Ended Feedback‬
‭In the survey, there were additional opportunities to provide open-ended feedback via the‬
‭following questions:‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭40‬

‭1.‬ ‭If you have used the VK_LAYER_LUNARG_crash_diagnostic layer, please provide any‬
‭feedback you may have (open ended)‬

‭2.‬ ‭What prevents you from being effective and productive while doing your Vulkan‬
‭development? (open ended)‬

‭3.‬ ‭Where would you like to see more investment in the Vulkan developer tools space?‬
‭4.‬ ‭Is there anything else you would like to share?‬

‭All of this open-ended feedback has been consolidated and grouped into the sections below.‬
‭Comments were not removed, even if repeated or saying the same thing a different way.‬

‭Vulkan on Apple Platforms‬

‭1.‬ ‭The current situation with MoltenVK doing their own releases on their github page is‬
‭confusing. I'm using those for macos but feel like the lunarg sdk releases should be the‬
‭one and only way to get the sdk.‬

‭a.‬ ‭LunarG comment: The releases done on the MoltenVK repository are the releases‬
‭pulled into the Vulkan SDK. Users can choose to use the macOS SDK (and get‬
‭those MoltenVK releases), or to use MoltenVK directly from the repository.‬

‭2.‬ ‭"My christmas wishlist: - Ray queries (or even tracing) on macOS"‬
‭3.‬ ‭much better support for MoltenVK (1.3 is not available yet)‬
‭4.‬ ‭MoltenVK is a constant bottleneck always lagging behind what's available on Windows‬

‭or even Linux. For that reason i have to make application design decisions that i dont‬
‭want to make but have to because i require macOS support.‬

‭5.‬ ‭I'm worried about the pace of development of MoltenVK, it still doesn't support version‬
‭1.3 and I'm worried that it will take much longer to support ray tracing. To the point that‬
‭I'm considering dropping Vulkan in favour of Metal, because iOS and iPadOS is a very‬
‭important platform for me.‬

‭6.‬ ‭Having to use the Xcode frame profile, since I have to export my VSCode CMake project‬
‭as an Xcode one, configure it there and then debug it. This repeats when I made a‬
‭change in the original project…‬

‭a.‬ ‭But that is Apple's fault. I am very thankful for you guys providing MoltenVK.‬
‭7.‬ ‭MoltenVK missing extension support for advanced features. Limited Rust SPIR-V library‬

‭support‬
‭8.‬ ‭Support of 1.3 in MoltenVK and ray tracing extensions‬
‭9.‬ ‭MoltenVK ray tracing is needed for truly portable modern VK code.‬
‭10.‬‭MoltenVK ray tracing‬
‭11.‬‭Please try to maintain and put more into MoltenVK‬
‭12.‬‭MoltenVK missing ray tracing support is a huge problem.‬
‭13.‬‭Need more work on MoltenVK‬
‭14.‬‭Fuller 1.3 support in MoltenVK. Ya'll have done an amazing job here already, and I‬

‭understand that resources and funding are tight as it is. Also having people comfortable‬
‭with both Metal and Vulkan I'm sure are not easy to find.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭41‬

‭15.‬‭MoltenVK needs more investment‬

‭LunarG comment: It is known that the current Vulkan on Metal solution (MoltenVK) hasn't been‬
‭able to keep up with Vulkan as it progresses. For example, its support has not moved beyond‬
‭Vulkan 1.2 and it hasn't become a conformant implementation. LunarG is investigating ways to‬
‭help improve this situation.‬

‭Crash Diagnostic Layer‬

‭1.‬ ‭The layer is easy to use, to configure and provides useful feedback in many cases.‬
‭2.‬ ‭I really like that there is such a tool!‬
‭3.‬ ‭Useful but not yet the same level of information as e.g. Aftermath‬
‭4.‬ ‭I generally haven’t found it to be useful. Crashes seem to be somewhere deeper in driver‬

‭code that isn’t picked up.‬
‭5.‬ ‭just recently became aware of it, will use it to narrow down future crashes‬
‭6.‬ ‭I like it, altough in some cases I did not get much info in the dump (might be a‬

‭configuration issue or a missing extension on my nvidia 4xxx gpu).‬
‭7.‬ ‭Diagnostics are somewhat inconsistent‬
‭8.‬ ‭It was functionally unusable the one time I tried it. My SDK is a few versions out of date,‬

‭so maybe that has since changed.‬
‭a.‬ ‭LunarG comment: For the 3 previous comments, earlier versions of the layer had‬

‭these issues. They have since been fixed. Try it again!‬
‭9.‬ ‭that seems to be newer; we use nvidia only aftermath:-(‬
‭10.‬‭It caused issues on my driver. Haven't investigated yet.‬
‭11.‬‭In my case most of the time if I screw something up I end up killing the driver entriely‬

‭(nvidia) so i dont even try to use this one as it wouldnt catch anything i guess‬
‭12.‬‭I have not had a device lost since the layer came out‬

‭Inhibitors to being productive or effective during Vulkan App Development‬

‭1.‬ ‭My Display Miniport Driver isn't developed enough to support a Vulkan client.‬
‭2.‬ ‭nothing really or not Vulkan related :)‬
‭3.‬ ‭Too many possible configurations to cover all devices‬
‭4.‬ ‭Nothing!‬
‭5.‬ ‭init a big graphic pipeline，and init lot of struct‬
‭6.‬ ‭There's a lot of stuff that needs to be repeated in different ways in different places. An‬

‭obvious example is pipeline layouts: once in API calls, once more in shader source, yet‬
‭again in a material system. This is understandable, but since all of the reflection options‬
‭are limited, it's difficult to just automate the problem away.‬

‭7.‬ ‭Drivers on anything but windows.‬
‭8.‬ ‭That Vulkan devices can suddenly be lost unreproducibly (VK_ERROR_DEVICE_LOST)‬

‭even without a programming error on my side.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭42‬

‭a.‬ ‭LunarG comment: Try using the Crash Diagnostic Layer (included in the Vulkan‬
‭SDK or found at‬‭https://github.com/LunarG/CrashDiagnosticLayer‬

‭9.‬ ‭AMD Vulkan Compute is a huge problem for us... we currently turn it off on Linux and on‬
‭Integrated GPUs... we're still trying to figure out how to handle the issues... we would like‬
‭to expand our server compute offerings but this is basically blocking lot of work.‬

‭10.‬‭Invest more in AMD Vulkan Compute‬
‭11.‬‭AMD Vulkan Compute:‬

‭a.‬ ‭- works generally on Windows‬
‭b.‬ ‭- has trouble on AMD Integrated GPUs on Windows‬
‭c.‬ ‭- has trouble on all AMD GPUs on Linux‬

‭12.‬‭I keep saying it but our big issue is we are having problems with Vulkan Compute on‬
‭AMD Linux... I think it's driver problems on their end but it blocks lots of our plans.‬

‭13.‬‭c/c++ itself‬
‭14.‬‭Limited resources on some less frequently used extensions‬
‭15.‬‭Shader Objects doesn't support raytracing + I would be happy if Shader Objects will get‬

‭more performance optimizations.‬
‭16.‬‭Has monolithic PSO - Metal/Direct3D12(may be LibGNM).‬
‭17.‬‭Nvidia/amd differences‬
‭18.‬‭gpu captures & replay, not smooth, specially when blocked by a single capture opened at‬

‭a time.‬
‭19.‬‭XCode.‬
‭20.‬‭Productivity impacts due to experience/knowledge‬

‭a.‬ ‭Lack of theorethical graphics knowledge‬
‭b.‬ ‭My very limited knowledge‬
‭c.‬ ‭Setting up a new project and synchronization‬
‭d.‬ ‭Bugs in my code, mostly. Right now I have a bug where every other frame, one of‬

‭my buffers (bound through BDA) is just... wrong. My atomic add adds to the‬
‭wrong place in the buffer. Existing tools like RenderDoc and GPU-Assisted‬
‭Validation haven't helped, running my code on Android just makes it crash on‬
‭startup, I don't know where to go from here to debug it‬

‭e.‬ ‭Not getting enough time to work on it..‬

‭Shader Compiler, Languages and related Tools‬

‭1.‬ ‭slang‬
‭a.‬ ‭Ship with slang, and get perfect glsl to slang mappings as well as more‬

‭information for developers switching.‬
‭b.‬ ‭Invest more in slang‬
‭c.‬ ‭I would like GLSL updates, or a stronger commitment to GLSL developers with‬

‭slang. Currently its perfect for HLSL, but subpar for GLSL, which is the opposite‬
‭of how a Khronos API should be. I get that most large code bases target HLSL,‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭43‬

https://github.com/LunarG/CrashDiagnosticLayer

‭but being a second class citizen because you didn't historically focus on‬
‭Microsoft technologies is unfortunate.‬

‭d.‬ ‭"Slang. It's an amazing language but there are compilation bugs, weird-looking‬
‭SPIR-V generation, and all sorts of problems with reflection (ranging from an‬
‭incomprehensible API that takes far too long to get to first ~triangle~ ""generated‬
‭a pipeline layout by reflection"", to an inability to query assigned variable defaults,‬
‭to all sorts of sharp edges when reflecting user attributes).‬

‭e.‬ ‭GLSL is dated and slang adoption is still annoying.‬
‭f.‬ ‭GLSL doesn't support rich annotations, and Slang's annotations are in theory‬

‭good, but in practice this part of the Slang project is still pretty limited and buggy.‬
‭g.‬ ‭Need to invest more in shader compilers (e.g. Slang)‬
‭h.‬ ‭I'm the principal developer on SDL's new GPU API. Overall I'm really pleased with‬

‭the state of Vulkan tooling right now. My only thought is that slang needs a clear‬
‭path for laying out descriptor bindings. Our shader system requires a particular‬
‭descriptor set layout and developers who try to use slang with SDL GPU run into‬
‭this problem. I don't personally use slang but it's a frequent complaint that I see.‬

‭i.‬ ‭I really dislike Slang and fact that HIP/Rocm and Opencl c++ don't compile to‬
‭vulkan SpIR-V.‬

‭j.‬ ‭It would help to have slangc be listed alongside dxc in the find Vulkan cmake for‬
‭easier build system integration‬

‭k.‬ ‭Someone really should make Rust bindings to Slang.‬
‭2.‬ ‭GLSL‬

‭a.‬ ‭Also GLSL has early support for all the new extensions but the language does not‬
‭support useful modern features‬

‭b.‬ ‭limitations of GLSL, poor integration of shading languages in the host language‬
‭(e.g. for structs shared between host & device, need to write the definition twice,‬
‭for shaders and for the host app)‬

‭c.‬ ‭I need single header shader compilation libraries for runtime so glsl shader code‬
‭could be loaded directly without needing to recompile them before outside the‬
‭application‬

‭3.‬ ‭DXC/HLSL‬
‭a.‬ ‭DXC bugs and quirks.‬
‭b.‬ ‭I need dxccompiler.so for Android, I still can't compile it.‬
‭c.‬ ‭improve HLSL to spirv translation‬
‭d.‬ ‭I need robust DXC support and bug fixes‬
‭e.‬ ‭More investment needed here:‬

‭i.‬ ‭Clang-HLSL, SPIR-V function calls and pointers‬
‭ii.‬ ‭Clang-HLSL, SpIR-V function calls/pointers, forward progress.‬

‭f.‬ ‭Clang-HLSL not having enough resources‬
‭g.‬ ‭Lackluster development velocity of Clang-HLSL‬

‭4.‬ ‭Shading languages being universally terrible.‬
‭5.‬ ‭Invest more in SPIRV-cross‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭44‬

‭6.‬ ‭Uniform shader compiler to compile lot shader language to spir-v‬
‭7.‬ ‭No function pointers or goto statements in SPIR-V, and lack of forward progress it‬

‭guarantees‬
‭8.‬ ‭Lack of goto/function pointers in SpIRv, and forward progress it guarantees.‬
‭9.‬ ‭multiple shader languages: GLSL / HLSL / Slang‬
‭10.‬‭Being forced to external tools for compiling shaders.‬
‭11.‬‭Shader languages (is inhibiting my productivity and effectiveness)‬
‭12.‬‭SPIR-V cross bugs‬
‭13.‬‭SPIR-V Cross needs to be rewritten‬
‭14.‬‭spirv-reflect could have feature parity with spirv-cross as linking spirv-cross just for‬

‭reflection is a tad excessive‬
‭15.‬‭Add direct and simple support for compiling shaders from source to the API.‬
‭16.‬‭the lack of single-source programming environments similar to CUDA.‬
‭17.‬‭Runtime shader compilation and linking to a library that's required for it. (CMake +‬

‭FetchContent/CPM). Maybe I just haven't found a simple way to do that yet. Examples?‬
‭18.‬‭SPIR-V debugging is very cumbersome. https://www.khronos.org/spirv/visualizer/ does‬

‭not to that demand justice. It would be nice to have more aids, such as basic block‬
‭grouping and better explanations about various referenced inputs, types, and structs.‬

‭19.‬‭Invest more in Shader languages‬
‭20.‬‭Need better shader languages‬
‭21.‬‭Some more investment on spirv tools like spirv-link would be nice‬
‭22.‬‭I'd like to see a shading language that integrates better with the host-side language (e.g.‬

‭reuse struct definitions between shader & host code)‬
‭23.‬‭what ever glsl or hlsl etc. all the shading language can transform to spir-v use uniform‬

‭compiler.‬

‭Tooling‬

‭1.‬ ‭Vulkan development tools have been great and helped solve many issues!‬
‭2.‬ ‭Debugging tools are not as useful/robust as dx12 equivalents‬
‭3.‬ ‭RenderDoc‬

‭a.‬ ‭Renderdoc not working with newest extensions.‬
‭b.‬ ‭Being unable to use RenderDoc‬
‭c.‬ ‭Validation and debugging tool support for descriptor buffers, especially‬

‭RenderDoc.‬
‭d.‬ ‭I think last year, I would have said tools like RenderDoc and NSight not catching‬

‭up, but I think that's rapidly changing.‬
‭e.‬ ‭RenderDoc also needs to support RT, or we need to embrace a better alternative‬

‭more equipt to handle modern VK code.‬
‭f.‬ ‭Improving RenderDoc (it's not a part of Kronos, but it should be!) to catch up with‬

‭the latest additions to Vulkan.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭45‬

‭g.‬ ‭Invest more in RenderDoc‬
‭h.‬ ‭I am mostly fine with what is available. Maybe GPU debugging? But RenderDoc‬

‭gets the job done for the most part.‬
‭4.‬ ‭Profilers‬

‭a.‬ ‭Lack of good cross-vendor profiling tools‬
‭b.‬ ‭Profilers like RGP and other performancettools (RGA) that are easier to set up‬

‭and more robust‬
‭5.‬ ‭Device Lost‬

‭a.‬ ‭Diagnosing device lost or fence timeouts.‬
‭6.‬ ‭Shader debugging‬

‭a.‬ ‭lack of good shader/device emulation/debugging‬
‭b.‬ ‭Better shader debugging tools‬
‭c.‬ ‭I hope there will be improvements to the shader debugging environment.‬

‭especially for compute shaders.‬
‭d.‬ ‭lack of shader/register level profiling tools for older hardware‬

‭7.‬ ‭Bindings‬
‭a.‬ ‭Official Rust bindings for Khronos side projects like KTX would be great.‬
‭b.‬ ‭More support for Rust bindings,‬
‭c.‬ ‭Funding/support for https://github.com/ash-rs/ash‬
‭d.‬ ‭The Vulkano team needs some love.‬
‭e.‬ ‭modern C++ support‬
‭f.‬ ‭Official support for safer languages like Rust‬
‭g.‬ ‭Need Official Rust bindings.‬
‭h.‬ ‭Also, when creating tools, I think it's a mistake to provide these tools as c++‬

‭libraries with no c interfaces. Vulkan is used in a lot of languages, not just C.‬
‭Having to interop with C++ is extremely annoying, and could be avoided if helper‬
‭libraries simply were made in plain ol C, or at least provided an option. As it‬
‭stands we end up having to remake certain things like vkbootstrap in different‬
‭langauges, even though those can provide value to people generally.‬

‭8.‬ ‭GPU debugging‬‭(LunarG comment: To do good cross-GPU‬‭debuggers, the IHVs would‬
‭need to expose GPU characteristics to the Vulkan API to enable such tools. This won't‬
‭happen due to the proprietary nature of IHV GPUs. So GPU specific debuggers will be‬
‭unique to each IHV).‬

‭a.‬ ‭Lack of an actual GPU execution debugger like we have on the CPU. Nvidia‬
‭recently released a beta debugger in this vein for Nsight Graphics, but naturally it‬
‭only supports their GPUs.‬

‭b.‬ ‭I want GPU analyzers for linux!‬
‭c.‬ ‭GPU analyzers for linux‬
‭d.‬ ‭lack of GPU debuggers‬
‭e.‬ ‭Invest in GPU analyzers for linux‬
‭f.‬ ‭Invest more in Debugging tools (the existing ones are awesome, but there's a gap‬

‭for a real execution debugger).‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭46‬

‭g.‬ ‭There should be a single vendor independent debugging tool that should feature‬
‭all features to debug all kinds of stuff: shader execution, rays, models, PCI and‬
‭memory usage, basically mix of RenderDoc, NSight and RDP‬

‭9.‬ ‭Vulkan Introspection Layer‬
‭a.‬ ‭I found the Vulkan introspection Layer (https://github.com/nyorain/vil) a really‬

‭convenient tool for real-time debugging.‬
‭b.‬ ‭There is this Vulkan Introspection Layer (https://github.com/nyorain/vil) that is‬

‭Very effective, as it provides real time debugging capabilities, and it also‬
‭supports ray tracing (visualizing the acceleration structures). But its not that‬
‭active in development and it has a few instability issues. Still its very good, Could‬
‭Khronos help out in some way to develop this tool?‬

‭c.‬ ‭Invest more in Vulkan Introspection Layer maintanance, (and potentially‬
‭integration into vkconfig) (https://github.com/nyorain/vil)‬

‭10.‬‭Video and compute debugging tools with no graphics pipeline‬
‭11.‬‭Debugging applications that use advanced features (descriptor indexing, buffer‬

‭references and ray tracing) is very hard through the lack of good cross platform tools‬
‭12.‬‭Most time consuming issue is finding lost resources. When was a resource create,‬

‭destroyed and handle reused. Could be automated in a layer....‬
‭13.‬‭Doing compute shader debugging, it can be tedious at times thought debugPrintf helps‬
‭14.‬‭tooling quality and out-of-dateness on fedora linux‬
‭15.‬‭Tools and libraries that are largely unrelated to Vulkan but are necessary such as Visual‬

‭Studio which is frequently being frustrating or figuring out libraries to do model loading‬
‭16.‬‭Inabillity to emulate different devices and OSes‬
‭17.‬‭Official (or recommended) tools that provide an abstraction over memory allocation,‬

‭descriptor allocation, synchronization and device bootstrap.‬
‭18.‬‭Better debuggers that can help when my code is technically spec-compliant but still‬

‭buggy. I'd like an emphasis on multi-frame debugging, since a lot of modern rendering‬
‭techniques use information from previous frames to inform the current frame.‬
‭RenderDoc's UI could also use a bit of work, I constantly feel like I have to hunt through‬
‭three or four separate tabs to get an idea of what my renderer is doing. Maybe a more‬
‭visual representation of the data flow in my frame would help‬

‭19.‬‭Software emulation of extensions‬
‭20.‬‭would be nice to have a testing framework for lib developers where you can say‬

‭""apidump between these 2 points"" and then compare against a predefined dump of all‬
‭the functions, structs and their values, extra points for running under mockicd so you‬
‭don't need drivers or a device for a CI environment‬

‭21.‬‭more investment in the gpu captures, gpu captures for compute (using renderdoc), never‬
‭fun with vulkan as far as i've seen‬

‭22.‬‭Areas where more investment would be useful:‬
‭a.‬ ‭Invest more in game engines like Godot‬
‭b.‬ ‭Invest more in device emulation‬
‭c.‬ ‭profiling tools, examples, good practice examples‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭47‬

‭d.‬ ‭a cross-vendor/platform frame-debugger (like Renderdoc) or capture-tool with‬
‭raytracing support and ability to visually debug raytring workloads, visualize‬
‭Acceleration-structures (like e.g. nsight)‬

‭e.‬ ‭Raytrace debugging (nsight sortof covers this on nvidia gpus. Also its partly‬
‭ongoing in renderdoc, as it now can capture with raytracing enabled which is a‬
‭huge step)‬

‭f.‬ ‭Graphic debuggers.‬
‭g.‬ ‭Single-source C++ programming environment similar to CUDA where I don't have‬

‭to manage the boundary between CPU and GPU (in the process, eliminating the‬
‭need for a shading language).‬

‭h.‬ ‭It would also be awesome if Sascha's device registry (which is already‬
‭indispensable) supported richer queries and maybe even cross-referenced itself‬
‭with the Steam hardware survey or something like that so that it would be easier‬
‭to answer ""what amount of compatibility am I giving up if I require feature X""‬
‭type questions.‬

‭i.‬ ‭Debug tooling‬
‭j.‬ ‭I'm primarily working with headless (no surface) rendering and calculations,‬

‭profiling tools are difficult, limited or even impossible to use in such scenario.‬
‭k.‬ ‭I am missing a tool for showing the content of buffers and images in GPU‬

‭memory during application debugging. I believe it could be implemented as a‬
‭layer. That is the reason I asked one of my students at my university to try to‬
‭make a prototype. He is implementing for me a Vulkan Debugging Tool‬
‭(https://github.com/Vulkan-FIT/#vulkan-debugging-tool). He is expected to work‬
‭one more year on it, but the prototype already tells me that it is possible. The idea‬
‭is to step through the code in Microsoft Visual C++ and see in real time the‬
‭content of buffers and images of the application being debugged. Feel free to‬
‭contact me about this tool on peciva@fit.vut.cz .‬

‭l.‬ ‭Conformence testing & Validation layers‬
‭i.‬ ‭Both are good, but improvements here would benefit all."‬

‭Samples‬

‭1.‬ ‭More code samples‬
‭2.‬ ‭Synchronization is very hard to understand. Fully working examples with complex cases‬

‭should be available.‬
‭3.‬ ‭update examples to vulkan-hpp.‬

‭Tutorial‬

‭1.‬ ‭I think it would be useful if the Vulkan Tutorial just used vkconfig for validation layers‬
‭instead of enabling them in code.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭48‬

‭a.‬ ‭Comment from the Khronos Vulkan Tutorial team: Adding this as an option to the‬
‭programmatic layer setup is feasible. It will be investigated. See‬
‭https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60‬

‭2.‬ ‭"Vulkan Tutorial" using vkconfig instead of enabling layers in code.‬
‭3.‬ ‭More tutorials on intermediate features. Mesh shaders, the different methods for‬

‭descriptors, etc‬
‭4.‬ ‭If you want to learn the basics, the Vulkan Tutorial is great. However, if you want to learn‬

‭newer or advanced concepts, it's not always easy to find good materials. The‬
‭specification is huge and hard to read; it'd be nice to have some more guides, tutorials, or‬
‭materials that make learning easier.‬

‭5.‬ ‭Good official tutorials and guides for Modern Vulkan Features. The spec is nice, but a‬
‭written guide is a lot nicer introduction‬

‭6.‬ ‭I think the most important thing is to make Vulkan more accessible. Vulkan can be a bit‬
‭overwhelming even after completing the tutorial, and it'd be nice to have some more‬
‭tutorials in a centralized way to get a bit more used to the API. Not only showing how I‬
‭can make something work, like in a sample, but why should I use it this way. I'd love to‬
‭see some more informal guides, like how I should do certain things, to make them‬
‭performant. Videos can be good, and there are some great ones, but if I need something‬
‭specific, I can't really search if it contains that thing, so I either watch the full 1-hour‬
‭video or search for another material. But on the positive side, I can see that there are a‬
‭lot of videos, and there is an effort to make it more accessible.‬

‭7.‬ ‭I like the tutorials on youtube. I also took a tutorial on Udemy, by Galea. This stuff is‬
‭really hard to learn by myself.‬

‭8.‬ ‭More tutorials for beginners would have been nice.‬

‭Documentation‬

‭1.‬ ‭I need documentation and how the many extensions relate‬
‭2.‬ ‭Fuller documentation and more beginner friendly tutorials/samples‬
‭3.‬ ‭Vulkan is love! In general the documentation and best practices should reflect the latest‬

‭version‬
‭4.‬ ‭I very need spirv-reflect doc.‬
‭5.‬ ‭spirv-reflect online doc like docs.vulkan.org‬
‭6.‬ ‭I feel Vulkan is a very important project for the gfx community, but I fear big industry‬

‭players will try to interfere with the viability of it all, just as they did with OpenGL - making‬
‭the future uncertain for short, and in turn with consequences on the adoption of Vulkan‬
‭by programmers.‬

‭a.‬ ‭Therefore, thorough, open, user-friendly documentation (whatever the mileage of‬
‭readers), could well be a powerful safe guard for the future of the API&toolchain.‬
‭I'm saying this because I've noticed, in almost ten years of Vulkan, the ""official""‬
‭documentation effort (beyond just specs) only sprung up relatively recently, it‬
‭was a bit of a (pleasant) surprise, but also worrying to a certain degree."‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭49‬

https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60

‭7.‬ ‭like there to be more GLSL documentation that's specific to Vulkan. A lot of GLSL‬
‭documentation is specific to OpenGL and there are things that apply to Vulkan and‬
‭things that don't, which makes it more confusing. Sascha Willems' examples pertain‬
‭more to the Vulkan API itself but not the GLSL side of things so much - even though‬
‭there are some GLSL shaders. There's no GLSL-for-Vulkan documentation is what I think‬
‭I'm trying to say. :]‬

‭8.‬ ‭I feel I lack User guides as part of the Vulkan documentation, per-Vulkan version, as‬
‭things apparently changed substantially between 1.0, 1.1, ... up to 1.4. Such guides‬
‭should point clearly into best practices for a given version, and the overall‬
‭direction/roadmap for Vulkan by Khronos (a bird's eye view). Same goes for extensions‬
‭and stuff moved to core: I'd need a clear map of things.‬

‭9.‬ ‭Not enough documentation is available which explains the vkspec, similar to the notes in‬
‭the vkspec.‬

‭10.‬‭not enough documentation‬
‭11.‬‭The red book is terrible. Beyond Vulkan Tutorial, good reading material is quite rare‬
‭12.‬‭Good extensive and easy documentation, preferably in tutorial format that is not just‬

‭specification like but provides a story and takes you to a result through big picture and a‬
‭complete story/context.‬

‭13.‬‭Navigating the documentation could be easier. The new documentation website is a‬
‭good improvement though.‬

‭14.‬‭Specification load speed‬
‭a.‬ ‭The Vulkan Documentation should be much easier to navigate - it shouldn't take a‬

‭while to load and be one big huge document. It should be individual separate‬
‭pages like the registry.‬

‭b.‬ ‭Slow loading specs website‬
‭c.‬ ‭Full online specification loading time is extremely slow. It's not an issue if you‬

‭need to open the web page just once and keep it opened in your browser, but‬
‭when you frequently jump to the full spec with the hash to a section through the‬
‭hyperlinks from other pages, it's a painful experience.‬

‭i.‬ ‭LunarG comment: If you were linking to the full online specification from a‬
‭validation layer error message, the validation layer error messages now‬
‭link to an Antora site version of the Vulkan specification and load quickly.‬
‭This became available with SDK version 1.4.304.1‬

‭15.‬‭Lack of a central "best practices" store for Vulkan techniques. I am constantly‬
‭second-guessing myself when implementing basic features like async image uploading.‬

‭16.‬‭Quality online documentation, the current system is hard to navigate‬
‭17.‬‭Lack of optimisation recommandation inside the docs‬
‭18.‬‭Low amounts of fleshed out documentation in comparison to OpenGL (previous‬

‭toolchain) such as the vulkan docs being very barebones and most developers having to‬
‭rely on the registry or third-party tutorials/codebases‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭50‬

‭19.‬‭I'm a professional gfx programmer in the Games industry (I work on d3d12), I know I can‬
‭handle the learning curve for Vulkan fairly well (just starting down that road, for personal‬
‭projects mostly) - but I fear getting bogged down in outdated tutorials, books and such."‬

‭Vulkan API and Specification‬

‭1.‬ ‭Happy with Vulkan‬
‭a.‬ ‭Vulkan is pretty tight, yo.‬
‭b.‬ ‭Thank you all for making and maintaining Vulkan. It's the best of both GL and‬

‭D3D without all the garbage, and I'm elated that it exists.‬
‭c.‬ ‭I am incredibly more productive than when I wrote OpenGL. The first steps are‬

‭very hard, because of the API's explicitness inducing a lot of verbosity. After‬
‭becoming more familiar with the API (and introducing abstraction layers in the‬
‭framework I'm using), the workflow becomes both smooth and mechanical‬
‭(syntactically similar across functionalities).‬

‭d.‬ ‭Thank you for your hard work!!!‬
‭e.‬ ‭"Thank you for Vulkan!‬
‭f.‬ ‭We will improve our 3D graphics using Vulkan API‬
‭g.‬ ‭i love vulkan, khronos, opengl,..i love you :)‬
‭h.‬ ‭Vulkan forever, OpenGL must die as soon as possible"‬
‭i.‬ ‭I'm super new, but I like vulkan so far.‬
‭j.‬ ‭I can't really pinpoint something, as I have been quite comfortable with Vulkan‬

‭lately. I think the roster of features that have been added to the core in 1.2 and‬
‭1.3 improved Vulkan heavily.‬

‭2.‬ ‭Not happy with Vulkan‬
‭a.‬ ‭Vulkan is exactly the same as OpenGL, except with no sensible defaults and‬

‭fewer features.‬
‭b.‬ ‭Vulkan is garbage and is killing your organization‬
‭c.‬ ‭Khronos prevents me from being productive and effective with my application‬

‭development‬
‭d.‬ ‭All Vulkan succeeds in doing is ensuring industry regulatory capture from larger‬

‭developers by adding needless complexity to programming GPUs.‬
‭e.‬ ‭The sooner it is abandoned in favor of separate, simpler, APIs for tiled and‬

‭desktop class GPUs, the sooner we can get back to actually being productive‬
‭again."‬

‭f.‬ ‭Abandon the API, there is no fixing it.‬
‭g.‬ ‭It's too late - I've moved to DX12‬
‭h.‬ ‭Release OpenGL 5 and drop the failed Vulkan API.‬
‭i.‬ ‭vulkan is annoying to use.‬
‭j.‬ ‭Improve OpenGL instead.‬
‭k.‬ ‭that's why im currently using OpenGL‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭51‬

‭3.‬ ‭Verbosity, complexity, and bloat‬
‭a.‬ ‭Verbosity of the API (esp when just trying to explore new extensions/features),‬
‭b.‬ ‭The verbosity & complexity of the API, and runtime pitfalls such as implicit layers.‬
‭c.‬ ‭Legacy bloat in the Vulkan spec‬
‭d.‬ ‭The lack of a standardized mid-level API is a major issue to independent‬

‭developers who are not dedicated entirely to graphics programming. Vulkan is‬
‭proving too complex for production use without dedicated engineers for it.‬

‭e.‬ ‭I'dDespite having used most versions OpenGL and DirectX and currently have a‬
‭reasonable Vulkan render back end, I think Vulkan is still too complex,‬
‭unnecessarily complex for most developers. An option for automatic‬
‭synchronization and simplified handling of things like SwapChains could help,‬
‭even if optimal performance is sacrificed. I understand why one size cannot fit‬
‭all. With more responsibilities than ever, the graphics programmers job never‬
‭ends now.‬

‭f.‬ ‭it was difficult to begin with, steep learning curve, but after a while-becomes‬
‭challenging in a good way, i believe i am productive enough‬

‭g.‬ ‭Lack of experience and know-how. Thinking about how to abstract things is‬
‭getting easier with more experience.‬

‭h.‬ ‭Image layout transitions are a bummer. For now I'm just transitioning images to‬
‭IMAGE_LAYOUT_GENERAL for now, and when mobile becomes a higher priority‬
‭I'll start thinking more about it.‬

‭i.‬ ‭It is a little hard that there are multiple active ways to do similar things.‬
‭i.‬ ‭- descriptor pools / buffers‬
‭ii.‬ ‭- render pass / dynamic rendering‬
‭iii.‬ ‭- pipelines / shader objects‬
‭iv.‬ ‭- timeline / binary semaphores‬

‭j.‬ ‭- storage buffers as function arguments‬
‭k.‬ ‭- templates‬
‭l.‬ ‭I hope vulkan can become more beginner friendly, without cutting back on the‬

‭amount of boilerplate. I think the amount of granularity in setting up a renderer is‬
‭great, but sometimes can go unexplained or left to a black box. I hope the docs‬
‭can be filled out, registry made more friendly to beginners, maybe suggesting‬
‭fixes or common mistakes made in either the validation layers or registry links,‬
‭and make the roadmap more aggressive with its feature set.‬

‭m.‬ ‭It is difficult to understand the correct usage of VkSubpassDependency. It's more‬
‭difficult to understand depending on the situation like MSAA or subpass(input‬
‭attachment).‬

‭n.‬ ‭it is hard to deduce best practices, many examples for boilerplate but not many‬
‭for practical uses, modern techniques allow simplified development but they are‬
‭hard to find.‬

‭o.‬ ‭I'm a beginner so my biggest problem is figuring out the correct way to do things.‬
‭Knowing about things like synchronization2, the various maintenance extensions,‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭52‬

‭etc is a bit harder when leaning it all at once. You have to learn the old way, the‬
‭new way and the reasons for the change..‬

‭p.‬ ‭The amount of pNext structures making programming and navigating through‬
‭the spec hard and unclear. The vulkan API is piling up extension after extension‬
‭and this problem is becoming worse and worse.‬

‭4.‬ ‭Feature requests‬
‭a.‬ ‭Standardization of the VK_NV_ray_tracing_motion_blur extension, so it can be‬

‭used on non-nvidia hardware‬
‭b.‬ ‭We need multi-level bvh for ray tracing and get more feedback from bvh hits (e.g.‬

‭diagnostics about how often parts of bvh are hit so we could stream in/out bvh‬
‭data for massive scenes)‬

‭c.‬ ‭I want Present timing on Windows and Direct Storage extension‬
‭d.‬ ‭Invest more on unifying raytracing specification of vulkan.‬
‭e.‬ ‭I am missing two things in Vulkan API:‬

‭i.‬ ‭(1) - Indices are just 32-bit. It means they cannot be used for the indexing‬
‭all the vertices in GPU memory. If they would be represented by 64-bit‬
‭value, it could be much more general solution allowing for using it as‬
‭pointer to the whole GPU memory. This would provide quite flexibility for‬
‭CAD applications handling huge models with many parts scattered‬
‭through the whole gpu memory. This is related to another problem: If‬
‭indices are scattered through the whole gpu memory, I cannot submit‬
‭batch of indirect command structs by a single‬
‭vkCmdDrawIndexedIndirect call, because I have to update index buffer‬
‭binding before processing of each indirect command struct. I would like‬
‭to drop the idea of binding index buffer and to have pointer (or‬
‭VkDeviceAddress) to the first index stored in the indirect command struct.‬
‭This way, indices might be stored anywhere in gpu memory and I could‬
‭easily make single vkCmdDrawIndexedIndirect call for one hundred of‬
‭thousands indirect command structs as opposite of one hundred of‬
‭thousands pairs of draw calls interleaved with vkCmdBindIndexBuffer‬
‭calls. Even recording it is slow.‬

‭ii.‬ ‭(2) - It would be so cool if I would not need to bind descriptors, but could‬
‭access them directly by pointer. Something like the buffer_reference used‬
‭in GLSL can do for direct memory access (without binding of buffers).‬

‭f.‬ ‭Please make descriptor buffer extension core and focus on forcing vendors to‬
‭develop drivers for older gpus(for example intel doesnt support vulkan on some‬
‭not so old mobile gpus on windows)‬

‭g.‬ ‭I would be happy if descriptor Buffer had promoted to API, please and more‬
‭dynamism, but take into account and first place performance. More low-level‬
‭control and less high-level abstractions. Developers are happy when they have‬
‭more control how they managing bytes in memory :)‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭53‬

‭h.‬ ‭Timeline semaphores not being able to extend to swapchain synchronization is‬
‭really a bummer. It means you cannot universally adopt them, which means an‬
‭extra place for things to go wrong.‬

‭i.‬ ‭Possibly a common abstraction for "work graphs", like a cross-vendor version of‬
‭VK_AMDX_shader_enqueue‬

‭5.‬ ‭Modernization/Deprecation‬
‭a.‬ ‭Yes. Stop releasing 100s of extensions every single year. I work with Vulkan‬

‭almost daily and even I can't keep up.‬
‭b.‬ ‭Also, start deprecating stuff sooner rather than later. Implement the deprecated‬

‭craft in some layer for backwards compatibility and clean the API."‬
‭c.‬ ‭I am strongly in favour of a Vulkan 2.0 release that removes all legacy parts of‬

‭the Vulkan API‬
‭d.‬ ‭Vulkan is piling up on new features, that are replacing old patterns, and despite‬

‭its good seeing the api getting more modern, at the same time it is making things‬
‭more confusing. As an example see descriptor buffers, push descriptors and‬
‭normal descriptor sets. Official guides still reference different patterns, and is‬
‭unclear which ones are actually recommended nowadays. I think a Vulkan 2025‬
‭guide is needed, illustrating the modern patterns which are recommended to be‬
‭uses, assuming modern desktop hardware.‬

‭e.‬ ‭Make Vulkan simpler, deprecate and remove, lots of controls are unnecessary‬
‭and or could be simplified while leaving the more advanced door open‬

‭6.‬ ‭Overall with 1.2 extensions and onward the developer experience has vastly improved.‬
‭Adding more options to dynamic rendering is always helpful but extending what can be‬
‭done on the GPU with more functions would be nice (for example providing a list of‬
‭scissors and changing scissor state with a single draw indirect call would be a nice‬
‭addition)‬

‭7.‬ ‭Direct3D12, Metal has no compatibility for older API, and has success.‬
‭8.‬ ‭Timeline semaphore support for swapchains‬
‭9.‬ ‭1. Bad API design‬

‭a.‬ ‭- Legacy from OpenGL VkFrameBuffer. Direct3D12/Metal has no this abstraction‬
‭at all.‬

‭b.‬ ‭- VkPipelineLayout Direct3D12 has no this abstraction at all.‬
‭c.‬ ‭- GLSL this Is poor choice for Vulkan. HLSL should be first language for Vulkan‬

‭1.0 and later, instead of legacy GLSL‬
‭d.‬ ‭- numeric binding for Vertex Atrributes instead of Semantic names like as in‬

‭Direct3D12. We can create extension‬
‭e.‬ ‭VK_EXT_HLSL_semantic, it similar for Direct3D12‬

‭D3D12_INPUT_ELEMENT_DESC:‬
‭f.‬ ‭typedef struct VkVertexInputElementDescEXT {‬
‭g.‬ ‭const char* semanticName;‬
‭h.‬ ‭uint32_t semanticIndex;‬
‭i.‬ ‭VkFormat format;‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭54‬

‭j.‬ ‭uint32_t inputSlot;‬
‭k.‬ ‭uint32_t alignedByteOffset;‬
‭l.‬ ‭VkVertexInputRate inputSlotClass;‬
‭m.‬ ‭uint32_t instanceDataStepRate;‬
‭n.‬ ‭} VkVertexInputElementDesc;‬
‭o.‬
‭p.‬ ‭// VK_STRUCTURE_TYPE_INPUT_LAYOUT_DESC_EXT‬
‭q.‬ ‭typedef struct VkInputLayoutDescEXT {‬
‭r.‬ ‭VkStructureType sType;‬
‭s.‬ ‭const void* pNext;‬
‭t.‬ ‭const VkVertexInputElementDesc* pInputElementDescs;‬
‭u.‬ ‭uint32_t numElements;‬
‭v.‬ ‭};‬

‭10.‬‭2. Vulkan features‬
‭a.‬ ‭- Where Tile Shading for Vulkan on Mobile Platform ? See Metal API‬
‭b.‬ ‭- Where Mesh Shaders for Mobile platform ? see Apple A15 for iPhone 13 and‬

‭later‬
‭c.‬ ‭- When we will have Work Graph Shaders KHR, core ?‬

‭https://github.com/KhronosGroup/Vulkan-Docs/blob/main/proposals/VK_AMDX‬
‭_shader_enqueue.adoc‬

‭11.‬‭3 .4 Unnecessary extensions for legacy OpenGL compatibility‬
‭a.‬ ‭VK_EXT_shader_objects - Again OpenGL legacy compatibility ? The modern‬

‭successful Graphics API‬
‭12.‬‭VK_EXT_provoking_vertex Again OpenGL legacy compatibility ?‬
‭13.‬‭I'm still very new to it so mainly just learning the API. In particular, specifics about‬

‭changing of approaches to solving problems from OpenGL to Vulkan that are more‬
‭useful than a basic hello triangle. For example, migration from multi draw indirect calls‬
‭to an equivalent Vulkan solution would be welcome.‬

‭14.‬‭safer APIs‬

‭Android‬

‭1.‬ ‭Feature fragmentation across Android devices, especially our need for supporting years‬
‭old devices without driver updates‬

‭2.‬ ‭Driver bugs on some mobile devices‬
‭3.‬ ‭More debug tools on mobile platforms‬
‭4.‬ ‭Vulkan on Android‬

‭a.‬ ‭Bad Driver support, Developing of OpenGL ES/Vulkan Drivers spend a lot of time‬
‭for developers, we need to remove OpenGL ES’s native legacy drivers from‬
‭Android by replacing Angle via Vulkan.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭55‬

‭Miscellaneous‬

‭1.‬ ‭I’m a little unsure how the arch Linux package works but I assume it uses the tarball or‬
‭will quickly change so it should be fine‬

‭2.‬ ‭Update arch packages to 1.4‬
‭3.‬ ‭live debugging (i.e. not frame capture but debugging the live program, like nsight shader‬

‭debugger, rocgdb)‬
‭4.‬ ‭It would be nice if the OpenXR runtime and the VVL could (optionally, of course)‬

‭~conspire~ cooperate to mute the absurd amount of validation spam some of the XR‬
‭runtimes generate. (I would say "make the XR vendors make their runtimes‬
‭validation-clean, but I don't believe in fairy tales.)‬

‭5.‬ ‭Improve the Loader-ICD interface. Vulkan's ability to support extensions is nice, but the‬
‭D3D UMD is so much easier to implement.‬

‭6.‬ ‭better vulkan wayland support‬
‭7.‬ ‭More and more extensive/wider integration with various exiting libre/opensource‬

‭graphics tools and programming tools‬
‭8.‬ ‭Our current workaround is to have the server only GPU accelerate on Nvida, which‬

‭defeats the purpose of Vulkan Compute. It's primary advantage is cross hardware, if you‬
‭wanted Nvidia compute only why not use CUDA.‬

‭9.‬ ‭Continue the good work‬
‭10.‬‭Cute anime girl representation, a Vulkan-tan‬
‭11.‬‭more cowbell‬
‭12.‬‭I found the numbers of Vulkan Video talks disproportionately high at this year's‬

‭Vulkanised‬
‭13.‬‭Better support for older Linux distributions (with older GLIBC), e.g. we have to bundle an‬

‭old glslangvalidator with our app to compile shaders on the fly.‬
‭14.‬‭"As mentionned, I'm just starting my Vulkan journey, although I do work professionnally‬

‭with d3d12, and I'm also an OpenGL old timer.‬
‭15.‬‭The questtion about the important platform for the fututre was missing Linux/RISC-V, I‬

‭see this one becoming very important in the future.‬
‭16.‬‭"All I want is OpenCL 1.2 with triangle rasterisation and bytecode kernels.‬

‭LunarG 2025 Ecosystem Survey Results‬ ‭56‬

