LUN/\RX:_ GPU Software Specialists

March 2025

Methodology:

The purpose of the ecosystem survey is to help guide provide priorities to LunarG while
developing the Vulkan SDK and many of the Vulkan Ecosystem developer tools.

It was attempted to reach as many Vulkan developers as possible -- both SDK users and
non-SDK users. The survey was advertised on X, Reddit, LinkedIn, the Khronos Vulkan
slack channel, Vulkan Discord, and sent directly to 13,000+ recipients of the LunarG
Vulkan SDK mailing list. It was amplified by Khronos on their X account and newsletter
mailings as well.

All comments from open-ended questions are included in this report, regardless if they
are repeated. This helps you see the frequency of certain types of feedback.

Some Highlights:

1.
2.

9.

There were 279 respondents.
47% of the respondents use Vulkan for commercial purposes. 52% of the respondents
were self-studying Vulkan as part of a personal project or an Academic environment
(non-commercial).
72% of the respondents are regular, advanced, or expert Vulkan developers. 28% are
basic or beginner developers. Hence the feedback is coming from a more experienced
population.
This was the first year that we asked respondents which region (Americas, Europe, Asia)
they resided. 60% of the respondents resided in the European region.
WebGPU is becoming an important API for the future
ARM platforms (both Linux and Windows) will be important development environments
in the future.
slang (as a language and as a compiler) had a significant jump in popularity

a. 2024: 3% of survey respondents. 2025: ~27% of respondents
Validation Layer Themes:

a. Improve error messages

b. Improve coverage

c. Improve performance
Still strong demand for improved Vulkan documentation and tutorials

10. Continued concern about complexity and verboseness of the Vulkan API

LunarG 2025 Ecosystem Survey Results 1

LUN/\R):_ GPU Software Specialists

LunarG Actions for the year to come:

1.

Deprecate the Ubuntu Packages. They will discontinue being updated by June of 2025.
LunarG is looking for ways to reduce the workload for each SDK release. It has been our
suspicion that the Ubuntu packages are nice to have but not critical. The handful of
users that indicated the Ubuntu packages were critical, cited the need to rework their Cl
environment which relies upon package installation. It is very plausible to change these
Cl environments to install the Linux tarball instead.

a. See if the freed resources enables a Linux on ARM pre-built tarball SDK

Continue validation layer focus on improving GPU-AV.

a. Getting more people to enable GPU-AV for more complete validation coverage

b. Performance

c. More VUID checks requiring validation on the GPU

d. Descriptor Indexing and Buffer Device Address are popular and LunarG will
continue to focus on GPU-AV validating them well.

e. Ray Tracing/Query is so popular. This is currently WIP to do a better job of
validation.

f. Mesh Shading probably should get more attention

Continue improvements to validation layer error messages

a. Note that with the 1.4.309.0 SDK, some more significant improvements were
made. (See the validation layer error messages document and SDK release notes
for detail)

Enhance vkconfig and Vulkan Loader to enable adding ICD to the list of available ICDs on
the system (e.g.: Lavapipe enablement for C.I. purpose)

Time permitting: Are there ways to get a Vulkan on Metal solution that can be Vulkan
conformant and keep up with Vulkan evolution?

a. ltis known that the current Vulkan on Metal solution (MoltenVK) hasn't been able
to keep up with Vulkan as it progresses. For example, its support has not moved
beyond Vulkan 1.2 and it hasn't become a conformant implementation. With 30%
of the population indicating it is a "must have", ~35% indicating it would be nice
to have, the ecosystem has a gap in providing a good Vulkan on Metal solution.

b. LunarG is investigating ways to help improve this situation.

Time permitting: Investigate VK_LAYER_live_introspection as a tool for integration with
vkconfig/SDK

LunarG 2025 Ecosystem Survey Results 2

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/error_messages.md
https://vulkan.lunarg.com/doc/sdk/1.4.309.0master/windows/release_notes.html

LUN/\RX:_ GPU Software Specialists

LunarG 2025 Ecosystem Survey Report

What type of Vulkan Developer are you?

How experienced of a Vulkan Developer are you?

In which Region do you reside?

Your Vulkan development is for what type of industry (select all that apply)

What are the targets of vour Vulkan application? (check all that apply)

o N[O o o =

Indicate the importance of the listed development environments (skip environments that are

not important) 9
Do you use the Vulkan SDK? 10
If the LunarG Ubuntu packages for SDK releases were removed, what would be your
response? 11
How important are the following APls for your development TODAY 14
How important are the following APls for your development IN THE FUTURE 15
Which of the following Vulkan layers do you use? (answer choices: yes, no, don’t know
about it) 16
Do vou use the Vulkan Configurator (vkconfig)? 17
Vulkan Configurator Open-Ended feedback 17
What is your preferred shading language? Check all that apply 20
What is your tool of choice for generating SPIR-V? Check all that apply 21
What is your preferred tool for SPIR-V reflection? Check all that apply 22
Do you use the Vulkan Profiles toolset? 23
If you are using the Vulkan Profiles toolset, what are you using them for? (check all that
apply) 24

When using the Vulkan Profiles toolset, what are the inhibitors for you to use them easily or

effectively? 24
Do you use the Khronos Vulkan Validation Layer (VK_LAYER KHRONOS validation)? 25
How often does the performance of the Validation Layers inhibit effective use of them? 26
Do you use GPU Assisted Validation (GPU-AV, GPU-Assisted,
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT) 27
Do you use Synchronization Validation
(VK_VALIDATION FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT) 28
How do you adjust settings for the Validation Layers? (check all that apply) 29
Do you parse the messages in your own callback? (Check all that apply) 30
Please indicate which extensions you currently use or plan to use (check all that apply) 36
Do you use GFXReconstruct? 37
Which version of GFXReconstruct do you use? (check all that apply) 38
How satisfied are you with the reliability and quality of GEXReconstruct? 39
How important is a Vulkan to Metal translation layer (e.q. MoltenVK) for you? 40
Open-Ended Feedback 40
Vulkan on Apple Platforms 41
Crash Diagnostic Layer 42

LunarG 2025 Ecosystem Survey Results 3

LUN/\Rﬁ_ GPU Software Specialists

Inhibitors to being productive or effective during Vulkan App Development 42
Shader Compiler, Languages and related Tools 43
Tooling 45
Samples 48
Tutorial 48
Documentation 49
Vulkan API and Specification 51
Android 55
Miscellaneous 56

LunarG 2025 Ecosystem Survey Results

LUN/\RX: GPU Software Specialists

What type of Vulkan Developer are you?
Member of company (100 or more employees)

Member of company (99 or fewer employees)

Independent Software Developer (for
commercial purposes)

Academic

B

Self-study (as a personal project)

0% 10% 20% 30% 40% 50% 60%

52.5% are self-study or academic
47.5% are using Vulkan for commercial purposes

How experienced of a Vulkan Developer are you?

Beginner - just beginning to learn Vulkan

Basic User - infrequent Vulkan work, some
knowledge of spec and tools to allow for small tasks

Regular User - enough knowledge of spec and tools
to be effective for required tasks

Advanced User - Does a lot of Vulkan work with
good knowledge of the spec/tools/ecosystem

Expert User- Strong knowledge of the
spec/tools/ecosystem, deeply involved

0% 5% 10% 15% 20% 25% 30% 35% 40%

LunarG 2025 Ecosystem Survey Results 5

LUN/\RX: GPU Software Specialists

Of the population overall, 72% of the respondents had regular, advanced, or expert experience
with the Vulkan API. The survey respondents who were doing Vulkan development for
commercial purposes had more advanced or expert level experience with the Vulkan API.

In which Region do you reside?

70%

60%

50%

40%

30%

20% -

10% -

0% -

Americas Asia Europe

LunarG 2025 Ecosystem Survey Results 6

LUN/\R):_ GPU Software Specialists

Retail (e.g. AR shopping experiences)

Real Estate (e.g. 3D home tours)

Other (please specify)

Avionics (includes safety critical)
Government (e.g. serious gaming or...
Manufacturing (e.g. creating products from...

Healthcare

Geospatial Analysis and Geovisualization

Automotive (includes safety critical)
Professional services (e.g. consulting or...

Architecture

Scientific Research and Education

Other Meia and Entertainment

Engineering (e.g. mechanical, biomedical,...
visualization (e.g. scientific, medical, ...)

Self-learning
Games (includes VR/XR)

0% 10% 20% 30% 40% 50% 60% 70% 80%

This question is asked to see if Vulkan is expanding into other industries. Compared with the
data from 2 years ago, there are no significant shifts.

LunarG 2025 Ecosystem Survey Results 7

LUN/\RX:_ GPU Software Specialists

90%
80%

70% -
60% -

50% -
40% -

30% -

20% -

10% -

O%' T 1

LunarG 2025 Ecosystem Survey Results 8

LUI\[/\RXJ GPU Software Specialists

Indicate the importance of the listed development
environments (skip environments that are not important)

Most Important TODAY

1208
1005
30% -
60% -
40% -
20% | I
ﬂ% = T T T T T T T ._V
Windows Windows Linuxaon macds mac0s macO5 Linuxon Windows
10 x64,/%86 11 w64/ xB6 x6d/xE6 15.x 14.x (olderthan ARM 11 on
14.x) ARMEBS
Most Important in the FUTURE
1005
90% -
30% -
T0% -
60% -
50% -
40% -
30% -
20% -
10% | E
0% - r r r ' r r r
Windows Linuxon macd5 macs macO5 Linuxon Windows Windows
11 on ARM (olderthan 14.x 15.x k64 xBE 11 x64/xE6 10 x6d,/xE6
ARMEL 14.x)

Windows on ARM for both Linux and Windows become more important than x64/x86.
Interesting...

LunarG 2025 Ecosystem Survey Results 9

LUN/\RX: GPU Software Specialists

Do you use the Vulkan SDK?

90%

80% -

70% -

60% -

50% -

40% -

30% -

20% -

10%

- , ——

Yes No No, | am not familiar with the
Vulkan SDK

Which of the following Vulkan SDKs do you use? (check all

0% -

that apply)

LunarG 2025 Ecosystem Survey Results 10

LUNARX‘ GPU Software Specialists

100%

90%

80% -

70% -

60% -

50% -

40% -

30% -

20% -

10% -

Windows (x64 / Linux tarball Ubuntu packages macQS/i0s Windows 11 on
x86) ARM

If the LunarG Ubuntu packages for SDK releases were
removed, what would be your response?

A critical issue impacting my development
productivity (if so, please comment how the
impact is critical)

Annoyed, but | can adapt

| would use the Linux tarball instead

Fine with me, | don't care

0% 10% 20% 30% 40% 50% 60%

LunarG 2025 Ecosystem Survey Results 11

LUN/\Rﬁ_ GPU Software Specialists

LunarG is looking for ways to reduce the workload for each SDK release. It has been our
suspicion that the Ubuntu packages are nice to have but not critical. The handful of users that
indicated the Ubuntu packages were critical, cited the need to rework their Cl environment which
relies upon package installation. It is very plausible to change these Cl environments to install
the Linux tarball instead.

As such, LunarG will be deprecating the Ubuntu packages in the future.

1. New SDK versions
a. Arm version please.
b. Nice to have Ubuntu ARM packages as well.
c. Vulkan sdk for linux arm
2. Installation
a. Provide an offline installer.
b. I would appreciate an info that if installing on mac and not in global system wide
install, it wont work really
i. LunarG comment: The SDK works fine without global installation. The two
draw backs are you have to run setup-env.sh from the terminal to set
environment variables to point to the SDK files, and you don't get a
system-wide ICD installed. Some developers will prefer one approach over
the other. We could attempt to put this information into a message during
installation to make it more obvious.
c. Make it easy to pull the tarball from ClI or scripts (no redirect on download page
etc)
d. Regarding question 8 and how to obtain the SDK, while | don't use ubuntu
packages, | do rely on the SDK being available in a package manager.

a. | would love to have first party plugins for GLSL for VS Code and maybe Rust
Rover. The plugins existing today suck immensely. Would be great if those
included #include syntax

b. Not having a single suitable interactive development environment having a c++
toolchain along with vulkan SDK and tools built in.

c. Please please do the GLSL plugins!!!

d. We need better extensions in VSCode for GLSL development.

4. SDK content additions
a. Include Renderdoc

LunarG 2025 Ecosystem Survey Results 12

LUN/\RX:_ GPU Software Specialists

oo YN v

= O

12.

13.

14.

15.

16.

17.

18.

19.

20.

b. Make Rust a first class citizen in the Vulcan SDK. It’s kind of obvious that it is the
future at this point. As far as | cab tell, Safety without no performance overhead
has become critical.

c. Having the Slang component in the SDK simplifies dev environment setup a lot,
but that's quite a lot of lag given how fast they're moving on bug fixes and
updates.It'd be nice if there was a "rerun the installer" or "replace this subfolder
with that tarball" process to refresh Slang in place.

d. Make installation of Vulkan samples an option.

e. Make it put a shortcut to the Vulkan Configurator on the user's desktop. | see a
lot of Vulkan beginners who just don't know about the Vulkan Configurator, and
making it more discoverable would help them

Make fish-compatible setup-env file

SDK is getting better and making our lives easier every year. :)
Very happy with the tools provided in the Vulkan SDK.

None this year. It's mostly been a pleasure to use.

I'm happy :)

. Thanks for improving Vulkan! It is great!"
. | appreciate the effort of creating and maintaining the SDK. Many thanks, especially for

vkconfig.

Have better support for windows 11.

You're doing great! Keep with the same pace!

Always appreciate the amount of work that is put in the ecosystem and the professional
and friendly contact with the Lunar-G people. Especially the last has been very useful to
me

Please keep it working on older Linux systems (older GLIBC), | cannot use the latest
SDKs on all my Linux systems.

Thank you for everything you've done. Both as a hobbyist developer for enabling me to
do graphics in a significantly more effective and pleasant manner than in OpenGL days
and as an user, for setting up the environment so software like dxvk and vkd3d-proton
can exist, letting me use Linux for gaming too.

More frequent updates, less codebase breaking changes in small releases, or at least
with more warning/guides to updating (e.g. vk::DispatchLoaderDynamic ->
vk::detail::DispatchLoaderDynamic)

Where is chucked vulkan spec?

Having a more easier high level framework as well, or at very least guidance on higher
level middleware that builds on top of Vulkan.

All I want is a tutorial on how to get Vulkan to work on my mac without XCode. | usually
use vim and tmux. Would be happy with VSCode. | need to be able to use a make file.
There's a lot of settings there.

LunarG 2025 Ecosystem Survey Results 13

LUN/\R):_ GPU Software Specialists

120%

100%

80% -

60% -

40% -

20% -

0% -

B
NN & Q > & RN N o LS Q ¢ ¢
WP VLS SIS
& R R S
S SN & &) & AR & o
& *® & X
S (3 DA
& 3 S
) R (.’;‘fb Q«b\
&
\\g\‘\ \\.{\
o @
\a\ s

LunarG 2025 Ecosystem Survey Results 14

LUN/\R):_ GPU Software Specialists

120%

100%

80%

60%

40%

20%

0%

As expected, webGPU will increase in importance in the future.

LunarG 2025 Ecosystem Survey Results 15

LUN/\R):_ GPU Software Specialists

VK _LAYER LUNARG screenshot
VK_LAYER_KHRONQOS memory_decompressi...
VK _LAYER LUNARG_ gfxreconstruct
VK_LAYER_LUNARG_crash_diagnostic
VK_LAYER LUNARG_monitor

VK _LAYER_KHRONQOS profiles

VK _LAYER KHRONOQOS shader object

VK _LAYER KHRONOS timeline semaphore
VK_LAYER_LUNARG_api_dump
VK_LAYER_KHRONOS_synchronization2
VK_LAYER_KHRONOS validation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

| don't know aboutit M No MYes

LunarG 2025 Ecosystem Survey Results 16

LUN/\R):._ GPU Software Specialists

Do you use the Vulkan Configurator (vkconfig)?

60%

50% -

40% -

30% -

20% -

10% -

0% -

Yes

No, | am not familiar with it

Vulkan Configurator Open-Ended feedback

All open ended feedback is listed here, regardless if the same comment is said many times.

1. Usability
a. A bit more documentation on what all the checkboxes on the right mean would
be nice (maybe a right-click to go to a detailed description of what it catches), but
honestly | think it's fine as is.
i. LunarG comment: All the settings have tooltips in the application.
b. Detailed Documentation
The Ul is very confusing
d. I find vkconfig weird to use. When | enable API | can never find where the dump
goes to half the time
e. Make sync validation more discoverable. The current right-hand sidebar of
options is great for advanced users but | worry that beginners get overwhelmed
by the options and don't know how to navigate them"

o

2. Happy
a. none, its great

b. Working great no requests currently
c. none, works as expected

LunarG 2025 Ecosystem Survey Results 17

LUN/\Rﬁ_ GPU Software Specialists

Honestly, it's great.
None. It's performed all of my needs.
None, all previous suggestions have been implemented. <3
still need to get more familiar with vkconfig3, already seeing many usability
improvements and not missing anything atm
h. In-App documentation.
3. Quality/stability
a. Improve stability (it crashes when | try making a custom profile with
synchronization + validation).
b. |see some errors when | first start it up, every time.
".../Vulkan/RTSSVkLayer64.json is not a valid layer manifest", etc....
i. LunarG comment: This issue has been fixed in the 1.4.309.0 SDK:
https://qgithub.com/LunarG/VulkanTools/issues/2285
c. If DPI changes (connecting and disconnecting external screen to laptop) vkconfig
GUI layout gets broken.
4. Enhancement Requests
a. Make some data searchable. For example, opening Vulkan Info, and selecting a
device, opens up a huge list of properties. It would be great to be able to search it
by typing a name.
i. LunarG comment: We have created a feature request in the github
repository for this enhancement.vkconfig: Add searchable diagnostic
#2281
b. Recompile with qté6
i. LunarG comment: This has been completed and is delivered in SDK
1.4.309.0 for the Linux tarball, Ubuntu packages, Windows on ARM SDK,
and macOS SDK. Qt6 support is coming soon for the Windows X64 SDK.
c. maybe build into vkconfig a one click way to use validation layers from github
(latest commit or specific) since there's build artifacts now could maybe even
download them
i. LunarG comment: This may be a nice ease of use enhancement to
vkconfig. An issue has been logged in the LunarG/VulkanTools repository
as a possible future enhancement.
https://github.com/LunarG/VulkanTools/issues/2283
d. 1would like to be able to skip debug breaks for messages with certain IDs or
from certain sources, e.g. the Vulkan loader. | don't want to filter these messages,
just skip the debug breaks.

i. LunarG comment: Most likely a change is needed in the validation layer
and not vkconfig. A tracking issue has been created in the validation layer
repository:
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650

@ ~o o

LunarG 2025 Ecosystem Survey Results 18

https://github.com/LunarG/VulkanTools/issues/2285
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2281
https://github.com/LunarG/VulkanTools/issues/2283
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9650

LUN/\R)}

5. Other
6.

11

13.

14.

GPU Software Speci.a'lists

While relatively niche (compared to the more common developers), more tools
for IHVs developing ICDs would be useful. Stuff like making it easier to handle
the variables for overriding which ICD is chosen.
i. LunarG comment: This is already under investigation to provide more
control over handing Vulkan drivers (e.g. lavapipe). Stay tuned for a future
enhancement.

| mainly use it to configure applications that | run from IDE/terminal. | start
vkconfig set the config minimize it. Some times a day | reconfigure based on
needs. Tool does it job for me.
| hate that | need to have vkconfig open to get the GPU debug printf extension to
work. This seems to be a never ending issue. End users writing shaders should
be able to printf without needing to know intricate Vulkan configuration details.
a. LunarG comment: You can use environment variables or
VK_EXT_layer_settings to configure the validation layer as well, if you
don't want to open the Vulkan Configurator. See the SDK documentation:
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_la
yer.html and
https://vulkan.lunarg.com/doc/view/latest/windows/layer_configuration.
html
Save settings while it's not active
a. LunarG comment: Vulkan Configurator already does this. If you have a
situation where that is not working, please submit an issue to
VulkanTools on vkconfig.
Add a default profile that enables almost everything

.l also do not like VUIDs to be negative numbers. It might be hex number or dec

number but negative looks like that the programmer mistakenly wrote %i instead
of %u in the formatting string, or something like that. Not too serious problem.
But it might be easy improvement.

i. LunarG comment: This is an issue for the validation layer.

. I'm too new to this to offer any sort of useful suggestion.
12.

ability to emulate different devices with different drivers (preferably different
vendors and models), operating system as well
Specific overrides, like adding only a single layer on top of what was specified in
a program (e.g. adding VK_LAYER_shader_object to a program for a platform that
doesn’t support shader objects)
Make vkconfig more discoverable, perhaps with a desktop shortcut

a. LunarG comment. After SDK installation, the user is given the option to

start vkconfig. It is also in the Windows start menu.

LunarG 2025 Ecosystem Survey Results 19

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

LUN/\R):._ GPU Software Specialists

What is your preferred shading language? Check all that
apply

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

GLSL slang HLSL HLSL 2020 Other (please
specify)
Compared to last year, slang has made a significant jump in shader language preference. In
2024 it was preferred by about 3% of the population vs. ~27% today.

Other, commercial developers:
1. NZSL
MLIR
Zig
A subset of Rust itself
custom language
Nabla HLSL STL
Nabla HLSL STL
WGSL
9. Blender GLSL
10. We want to transition to slang
11. vee
12. My custom language that compiles to SPIR-V
13. rust-gpu
14. Ruamoko (work in progress, not ready for others)
15. Vce
16. Rust (rust-gpu)

© Nk N

LunarG 2025 Ecosystem Survey Results 20

LUN/\RX: GPU Software Specialists

What is your tool of choice for generating SPIR-V? Check
all that apply

60%

50%

40%

30%

20%

10%

0%

glslang glslc (shaderc) slang DXC Other (please
glslangValidator speci
IslangValid i

Slang made a significant jump in the preferred tool for generating spir-v. In 2024 it was at about
3% overall. This survey is showing it at about 27%.

Other, commercial developers:

1.

© Nk N

NZSL

proprietary translation tool
MLIR

naga

Custom

Naga

custom generator

Clang

Clang

. naga (note: NAGA is a shader translator and validator. Part of the wgpu project)
11.
12.
13.

vce
Naga (Rust)
gfcc (quakeforge, wip)

LunarG 2025 Ecosystem Survey Results 21

LUN/\R):._

14.Vce
15. embedded shaderc into my app
16. rust-gpu

SPIRV-reflect (KhronosGroup/SPIRV-reflect)

Other (please specify)

slang reflection API

GPU Software Specialists

0%

10%

20%

30%

40%

50%

60%

There are multiple reflection tools available. The purpose of this question was to see if there

was an obvious tool that wasn't being used. Evidently not.

Other category:

1.

9.

© No gk W

NZSL

| don't use SPIR-V reflection
N/A

| don't use reflection
RenderDoc

SPIRV-reflect sucks

Naga

not needed

none.

10. unfortunately not used yet.
11. spirv-tools

LunarG 2025 Ecosystem Survey Results

22

LUNARX‘ GPU Software Specialists

12. The available SPIR-V reflection tools are either too cumbersome, complicated, or lack
features | need, so | wrote my own.

13. We want to transition so slang (but not active yet)

14. rspirv (rust crate)

15. Hardcoded

16. https://docs.rs/spirq/latest/spirq/

17. I roll my own

18. parsing the bytecode in C

19. Custom library

20. spirv-reflect

21. 1 don't use reflection for now

Do you use the Vulkan Profiles toolset?

50%

45%

40%

35%

30%

25%

20%

15%

10% -

5% -

0% -

Yes

No, I'm not familiar with it

Similar rates of usage as the previous year.

LunarG 2025 Ecosystem Survey Results 23

LUN/\R):_ GPU Software Specialists

Ensuring the correct target GPU/capabilities for
my application is available at runtime

Documenting the required capabilities for my
project

Using the Profiles library, generate Vulkan
initialization code from the Profiles JSON file

Continuous Integration

0% 10% 20% 30% 40% 50% 60% 70% 80%

There were no "other" usages of the Profiles toolset listed by survey respondents. So the Profiles
toolset is being used for the expected use cases.

1. Can't scrape large amounts of GPU reports from gpuinfo.org
a. LunarG comment: There is an API to query gpuinfo.org documented here:
https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.m
d
2. No changes needed that | could think off
3. Build environment must support the instance extensions to have the profile included in
the binary.
a. LunarG comment: To support this would require some significant changes to the
Vulkan Loader. This was evaluated and determined that it would not be pursued
because it would be a breaking change (can't break compatibility until a 2.0
release).

LunarG 2025 Ecosystem Survey Results 24

https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md
https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/docs/api.md

LUN/\RX:_ GPU Software Specialists

4. No formal specification like Vulkan's vk.xml, this makes generating a Rust wrapper have

to deal with parsing C, or manual as | currently do it.

5. How restrictive the extension capabilities are

o

Invest more in the Vulkan Profiles Library

7. More investment in the Vulkan Profiles Library, such as formal specification with a .xml

to match that of Vulkan.

120%

100%

80% -

60% -

40% -

20% -

0% -

Yes

LunarG 2025 Ecosystem Survey Results

No

.

No, I'm not familiar with it

25

LUNARX‘ GPU Software Specialists

How often does the performance of the Validation Layers

inhibit effective use of them?

45%

40%

35% -

30% -

25%

20% -

15% -

10% -

5% -

0% -
Never Rarely

Sometimes

Often

LunarG comment: Similar to last year. Those who are impacted by the performance of the
validation layer are commercial developers and the performance impact is not always there.
Most likely when using GPU-AV and synchronization validation is when the performance hit is

observed.

LunarG 2025 Ecosystem Survey Results

26

LUN/\RX: GPU Software Specialists

Do you use GPU Assisted Validation (GPU-AV,
GPU-Assisted,
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)

60%

50% -

40% -

30% -

20% -

10% -

0% -

Not familiar with it Yes No No, and here's why not
Comments about why they are not using GPU-AV:
1. Didn't try yet

2. butlintend too very soon

3. Going to start after this conference

4. I've had a couple issues with it causing crashing and it causes an unacceptable
performance impact. Often tools like renderdoc or NVIDIA Aftermath are enough for my
use cases

5 -

6. Fartoo slow

7. Tried to have our test suite run with it, it was too slow.

8. every few releases it will crash or blackscreens my app, when it does work frame times

are horrible so I tend to avoid it unless something is really wrong

9. Lasttime |l used it, it reported false positives and introduced GPU crashes that were not
present without it

10. Last time | checked it wasn't checking out of bounds accesses to storage buffers

11. Causes the Nvidia driver to crash - but i haven't tested with 572.16

LunarG comment: With more validation moving to the GPU, for developers to get a fuller
validation coverage, they really need to be enabling GPU-AV. GPU-AV is still under active

LunarG 2025 Ecosystem Survey Results 27

LUN/\RX} GPU Software Specialists

development within LunarG and we are eager for you to submit issues. Our goal is to improve
coverage and performance to make it usable most of the time.

70%

60%

50%

40%

30%

20%

10%

0%

Not familiar with it Yes No No, and here's why not

"Here's why not" comments:

1.

I'm scared of what it might tell us. Ignorance is bliss. Also, using it on Android/iOS
through a MAUI project is cumbersome.

| usually don't have large sets of command buffers which need intricate synchronizing
It doesn't work for timeline semaphores.

a. LunarG comment: Synchronization validation for timeline semaphores was
completed in 2024. Is there an issue with it or is this statement made because
the user had not yet updated to a version of the SDK or validation layer that
provides support?

It's incomplete. Has too many false positives. Reporting issues results in several months
of waiting before a non-fix is made.

a. LunarG comment: Somewhere last year we started to follow a policy of
false-positive free behavior. Some functionality was disabled that causes
false-positives, some things were fixed, some false-positive friendly features
need to be turned on manually and are marked as heuristic. We are pretty serious
about keeping it this way and currently we are not aware about active

LunarG 2025 Ecosystem Survey Results 28

LUN/\R):_ GPU Software Specialists

false-positives (but there could be some). Please open issues because that's
something we care about.

b. LunarG comment: Regression defects are given the highest priority before
working on new validation. If any regression is detected, please submit a github
issue indicating it was a regression.

5. Ifind that it reports on many things that | see as perfectly valid and work across NVIDIA
and AMD without issues

a. LunarG comment: Yes, if you know how specific hardware works it might be valid
for that hardware but still be a violation of the Vulkan spec and the validation
checks against the spec. It's fine to violate spec in production environments
when you know what you are doing. It is also possible that for timing purposes
you are getting lucky.

6. My application skips synchronization on purpose and this layer will complain

Other:

| adjust the settings using the
vk _layer_settings.txt file directly

| don't bother with settings
| use environment variables
| wasn't aware there were settings

| use the VK_EXT layer settings API

| use the Vulkan Configurator (vkconfig) ﬁ

0% 10% 20% 30% 40% 50% 60%

Other comments:
1. or VkinstanceCreatelnfo
2. Ignore false warnings from code
3. lwill use VK_EXT_layer_settings inside Vulkan code in the future
4. |haven't had a need to, but I'm aware of the vkconfig if | need to

LunarG 2025 Ecosystem Survey Results 29

LUN/\R):_ GPU Software Specialists

LunarG Take-aways:
1. We still need to support the vk_layer_setting.txt file
2. Glad to know that vkconfig is the true majority
3. People do use settings mostly (This is good!)
4. There are still a good number of people (about 25%) who don't use settings (or not
aware of them) so the "out-of-the-box" needs to still be a good experience and we may
need to do more promotion of the value of using settings.

| don't know what this means
Other:

| log to a file and parse it later

| reorganize the error message in a more
readable format for myself

| just use the default callbacks to stdout

‘Illr

0% 10% 20% 30% 40% 50% 60%

Other comments:
1. Iregex out the verbose debug message text, though it seems to frequently change and
break.
a. LunarG comment: There is now a JSON format that they can turn on (as of the

1.4.309.0 SDK) and using that, likely no need to do a regex and can ensure the
JSON schema will not break in the future

2. | passthem to my logging framework.

3. Own logging system with partial parsing

4. |runthem through a custom logging system.

LunarG 2025 Ecosystem Survey Results 30

LUN/\Rﬁ_ GPU Software Specialists

5.

o

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.

20.
21.

I have my own logging utilities, but | don't parse anything, aside from the occasional
string search to remove redundant errors.

| use the log callback to rouge the log messages into my own logger, which both prints
them to a file and to stdout

| forward the messages to our logging system

Basic Windows OutputDebugStringA callback

| don't parse the messages, just read them. | do check for absence of
validation-warnings/errors in unit/functional tests though

We record the messages in our app's log.

| filter messages.

| gather the output and feed it into my regression testing system

set breakpoints etc.

Redirect between stdout and OutputDebugString as appropriate (Windows)

In unit tests, they are logged in a file, when the application is running, they are both
written to stdout and to a log file.

Yes. To ignore false positives.

| ignore certain errors instead of terminating my App

| log it as formatted output so | can see what the message, messageld and object(s) are
(etc.)

| use trasnlation to log file(for All Platforms) + stderr for Desktop Unix and
OutputDebugString Windows

simply print to stderr and exit(1)

I log to stdout and raise SIGTRAP or debug break

LunarG comment: Wow. Over half of the people use the default format. A change was just made
in the validation layers that will be delivered in the 1.4.309.0 SDK that makes improvements to
this format.

All open ended feedback is listed here, regardless if the same comment is said many times.

1.

More/better/timely coverage:
a. better & more complete validation layer support
adding more VUID coverage
More checks, obviously.
Occasionally the lack of validation for some parts of the API.
GPU assisted validation doesn't check all access hazards.
More video validation layers
More validation for VK 1.3 and 1.4 features and extensions.

@ *0 o000

LunarG 2025 Ecosystem Survey Results 31

LUN/\R)}

53~ =x

© 0o

GPU Software Speci.a'lists

i. LunarG comment: Validation for 1.3 and 1.4 is complete. New extensions
are validated shortly after public release.
More ray tracing validation coverage
i. LunarG comment: All of the CPU based validation for ray tracing is
complete. There is a lot of validation for ray tracing that must be done on
the GPU. Here is a tracking issue for that work:
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446
Timeline semaphores and queue family transfers
i. LunarG comment: Synchronization validation of timeline semaphores was
completed as of the 1.3.296.0 SDK
The validation layer's don't work with timeline semaphores.
i. LunarG comment: Synchronization validation of timeline semaphores was
completed as of the 1.3.296.0 SDK
Better support for descriptor indexing and descriptor buffers.
New extensions are not that important for me, but completing the basis is.

. have validation-layer coverage for new features as early as possible

Maybe more validation coverage? Validation layers are the best tool of all,
probably. Improving them is very useful!
better sync and oob access validation when buffer device addresses are involved
Fewer false positives. These practically force you to use gigabarriers for
everything if you use bindless, otherwise you get worthless GPU-AV.
Synchronization validation does not catch some errors.
GPU assisted validation needs some love or at least refresh the ecosystem's
memory on what checks are implemented and what checks are missing.

i. LunarG comment: Agreed. And GPU-AV validation is currently a top

priority at LunarG.

Acceleration structure, shader binding table should be able to detect that they are
not created correctly
More synchronization validation
Focus on HLSL and GPU assisted validation since most things move to GPU
driven
Debugger support for descriptor buffers

2. Performance:

a.

b.

When | enable debugPrintfEXT, the fps of my app drops a lot. | hope that the fps
will not drop even if | enable debugPrintfEXT.

i. LunarG comment: The 1.4.309.0 SDK should be faster now since we now
only do work if the app has printf. If the user is not wrapping their
debugPrintfEXT with a condition to only print once, and they are printing a
value for a fragment shader that is running a million times, that will be
slow as you are trying to print a million times

Faster GPU Assisted Validation

LunarG 2025 Ecosystem Survey Results 32

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9446

LUN/\R)]

c
d
e.
f.
g
h
i

J-

GPU Software Specialists

Less performance overhead.
Improved performance

perf

more performance

. just being faster in general

improve performance.
Performance of the validations layers
1000x synchronization validation layer.

3. Error messages:

a.
b.

@ o a0

S3 T T oD

°

The information provided should be more precise

The validation layers should be more consistent and provide better information
for debugging.

provide a mory readable and clean format output.

Make errors more readable?

Clearer more user-friendly messages

Continue improving error messages.

I think they're fine, though to someone relatively new, it seems verbose and
probably too "spec™-y. | think I've gotten used to parsing it in my head and
understanding where | messed up.

If their error handling were more readable...

Improved formatting of error messages.

reasonable format for printing and maybe structure (eg, json)

Better readability, or maybe a Ul you can use to "inspect” the errors better
Cleaner error messages

. Readability of error messages could be improved

More human-readable, maybe suggesting fixes in the registry or validation
message itself
Validation errors are hard to read

i LunarG comment: In response to all the comments above, the 1.4.309.0
SDK will have a cleaner format. There is also an option added to report
JSON and then the user can format how they find it best for them.

Let the user specify enough information to report errors sooner (e.g. in cases
where there is just one command buffer being recorded per frame and it runs
sequentially). Getting an error when you submit and not being able to trace where
it came from sucks. Alternatively, allow the user to place breadcrumbs and report
the most recent breadcrumb executed in the message."

i. LunarG comment: At the 2025 Vulkanised that took place in February
2025, Spencer Fricke gave a presentation about debugging your GPU
workflow. The presentation is here:
https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spe
ncer-Fricke-LunarG.pdf Starting around slide 40 you can find specific
information about vkCmdBeginDebugUtilsLabelEXT.

LunarG 2025 Ecosystem Survey Results 33

https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf
https://www.vulkan.org/user/pages/09.events/vulkanised-2025/T39-Spencer-Fricke-LunarG.pdf

LUN/\Rﬁ_ GPU Software Specialists

g. ldo not understand how to parse synchronization layer messages and correlate
all the data they provide with the API dump output.

r. sync validation messages read like sacred texts you need to journey up to the
wise one to decypher, generally finding out which cmds are involved is more
painful than it should be

s. More sync error info

t. Better validation error output for sync errors, they feel hard to track down

i LunarG comment: With the 1.4.309.0 SDK, improvements have been made
to the synchronization validation error messages to make them human
readable.

u. Debug message from VK_KHR_DEBUG_UTILS_EXTENSION_NAME was hard to
read, maybe it should be multiline.

v. The feedback from the validation layer is still confusing and not accurate enough.
At the end of last year, we spent a month finding a trivial error just because it
occasionally showed up in the validation layers.

4. Best Practices

a. More performance checks

b. would be interesting if developer had received "tips" what can be improved in API
calling for optimal usage.

5. Configuration
a. Better documentation for the validation layers and how to work with them.
i. LunarG comment: How to configure the validation layers is fully
documented here::
1. https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/
main/docs/settings.md
ii. Your comment made me realize that the same documentation should be
available in the SDK documentation and currently is not there. This will be
fixed in the 1.4.309.0 SDK

b. Somehow more aggressive defaults without the use of environment variables or
vkconfig

i LunarG Comment: As of the 1.4.309.0 SDK, useful warnings that were not
on by default will now be enabled by default.

c. lItis very complex to obtain and install for mobile device emulators

d. more stuff enabled ootb,

e. Make the debug printf layer work well without vkconfig, eg by exposing all
options through extensions/flags in the API that an engine can directly work with.

i. LunarG comment: There is now a "VK_LAYER_PRINTF_ONLY_PRESET"
environment variable that can be used to quickly turn it on without
vkconfig (also can be set through the API with VK_EXT _layer_settings)

f. I have found 3 different ways to configure validation layers and none of them
seem to work with rust/vulkanalia.

g. more modern interface, simpler integratrion

LunarG 2025 Ecosystem Survey Results 34

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/settings.md

LUN/\RX:_ GPU Software Specialists

6.

11.
12.
13.
14.
15.
16.

h. The BestPractices-specialuse-extension warning for debug_utils is shown on a
debug build. It should only show on a release build otherwise people will simply
filter it out which defeats the purpose and adds extra work.

i. If it cannot be determined whether an application is running in release or debug |
do not think this is a proper validation

j. better integration with IDEs

Quality/bugs

a. Focus on validation layers, make them perfect

b. improving GPU-AV.

c. Justless bugs in the validation layers. I've reported some but haven't got around

to others. Few but frustrating.

Fix all erros,

Today | see 240 issue form github

We have still a lof of error for Vulkan Validation Layers

Debug printf often crashes inside the validation layers"

One is definitely printf not appearing consistently.

This layer is an all or nothing deal and if it doesn't even support basic but
essential vulkan 1.0 core functionality (like gfot) then i cant use it. | would like to
use it though because i have a bug that looks like sync, but the layer is throwing a
lot of false positives and i have to modify my code to not use the stuff i
mentioned. | dont want to validate modified code, i want to validate the code i
have to release to my users.

Diagnosing failures

a. use label names if available. provide hint/example how to fix them online.

b. Better debugging of situations where my code is spec-compliant but not quite
working

c. Not much, maybe | would like a stack trace from a validation error but i think i can
do it on my own

Invest more in Validation layers
I'm 100% supporting to tie feature-development with CTS and validation-development.

—Ta oo

. The validation layers have helped immensely and a great resource! For debugging

applications and the new GPU tools will come help greatly.

they are great, keep it up!

Keeping up the good work

debugPrintf is also really useful for my use case.

The documentation links, but this was just fixed!!! So no comment at this time
Just thinking out loud: Resource tracking using pre-given strategies.

Validation Layers could help in spotting usage of undefined/discarded images and
buffers."

LunarG 2025 Ecosystem Survey Results 35

LUN/\R):._ GPU Software Specialists

Please indicate which extensions you currently use or

plan to use (check all that apply)

VK_KHR fragment shading rate
VK_EXT_shader_object

VK _EXT descriptor_buffer

VK _KHR ray query

VK _EXT _mesh shader

VK _KHR buffer device address

VK_EXT descriptor_indexing

VK_KHR_ray_tracing_pipeline | SN S

0% 10% 20% 30% 40% 50% 60% 70% 80%

LunarG Take-aways:
1. Descriptor Indexing and Buffer Device Address remain popular and LunarG will continue
to focus on GPU-AV validating them well.
2. Surprised that Ray Tracing/Query is so popular. This is currently WIP to do a better job of
validation.
3. Shader Object didn't suddenly become "the way" to do things yet.
Mesh Shading probably should get more attention
5. Descriptor Buffers is more popular than expected.

Ca

LunarG 2025 Ecosystem Survey Results 36

LUN/\RX: GPU Software Specialists

Do you use GFXReconstruct?

60%

50%

40%

30%

20%

10% -

0% n T
Yes

No, | am not familiar with it

LunarG 2025 Ecosystem Survey Results 37

LUN/\RX: GPU Software Specialists

Which version of GFXReconstruct do you use? (check all
that apply)

120%

100%

80% -

60% -

40% -

20% -

.

D% = T
GFXR for Vulkan GFXR for DirectX12

LunarG 2025 Ecosystem Survey Results 38

LUN/\RX: GPU Software Specialists

How satisfied are you with the reliability and quality of
GFXReconstruct?

90%

80%

70%

60%

50%

40%

30%

20% -

10% -

0% - . e 00
Satisfied Neither satisfied nor Dissatisfied

dissatisfied

Comments (Especially if you are dissatisfied):

1. it's a great tool but portability between different WSI-backends and gpu-vendors should
improve. also there are many options already for a replay and can become tricky to get it
right
| used it rarely but it was helpful
slowly improving
Do not use
Want to extract buffer and image contents after draws or dispatchés like in Renderdoc
for Cl purposes

a s~ N

LunarG comment: GFXReconstruct ease of use could certainly improve. GFXReconstruct is
actively being worked on as it is becoming the underlying engine for some important profiling
and debugging tools and this is continuing to drive quality and feature completeness.

What improvements or enhancements would you like to

have added to GFXReconstruct (open ended)?

LunarG 2025 Ecosystem Survey Results 39

LUNARX‘ GPU Software Specialists

1. more things should ‘'just work' with less options

2. The lack of a Ul for this tool(s) has dissuaded me from using it, especially because it's
not immediately clear what it provides over, for example, RenderDoc or Nsight Graphics.

3. I planto use it in the future, but never got around to it.

4. Renderdoc like capture API

5. Log call parametrs before executing the actual call so that we can see them when
diagnosing driver crashes

6. |think RayTracing/RayQuery needs polishing. Hard to say.

7. Seems reliable. No complains.

8. ability to begin capture after the application has been started. not sure if that's not
already a thing.

9. N/A, I don't use GFXR

How important is a Vulkan to Metal translation layer (e.g.
MoltenVK) for you?

40%

35%

30%

25% -

20% -

15% -

10% -

5% -

0% -

Must have it It would be nice Not important

Open-Ended Feedback

In the survey, there were additional opportunities to provide open-ended feedback via the
following questions:

LunarG 2025 Ecosystem Survey Results 40

LUN/\RX:_ GPU Software Specialists

3.
4.

If you have used the VK_LAYER_LUNARG_crash_diagnostic layer, please provide any
feedback you may have (open ended)

What prevents you from being effective and productive while doing your Vulkan
development? (open ended)

Where would you like to see more investment in the Vulkan developer tools space?
Is there anything else you would like to share?

All of this open-ended feedback has been consolidated and grouped into the sections below.
Comments were not removed, even if repeated or saying the same thing a different way.

Vulkan on Apple Platforms

1.

w

10.
11.
12.
13.
14.

The current situation with MoltenVK doing their own releases on their github page is
confusing. I'm using those for macos but feel like the lunarg sdk releases should be the
one and only way to get the sdk.

a. LunarG comment: The releases done on the MoltenVK repository are the releases
pulled into the Vulkan SDK. Users can choose to use the macOS SDK (and get
those MoltenVK releases), or to use MoltenVK directly from the repository.

"My christmas wishlist: - Ray queries (or even tracing) on macOS"

much better support for MoltenVK (1.3 is not available yet)

MoltenVK is a constant bottleneck always lagging behind what's available on Windows
or even Linux. For that reason i have to make application design decisions that i dont
want to make but have to because i require macOS support.

I'm worried about the pace of development of MoltenVK, it still doesn't support version
1.3 and I'm worried that it will take much longer to support ray tracing. To the point that
I'm considering dropping Vulkan in favour of Metal, because iOS and iPadOS is a very
important platform for me.

Having to use the Xcode frame profile, since | have to export my VSCode CMake project
as an Xcode one, configure it there and then debug it. This repeats when | made a
change in the original project...

a. Butthatis Apple's fault. | am very thankful for you guys providing MoltenVK.
MoltenVK missing extension support for advanced features. Limited Rust SPIR-V library
support
Support of 1.3 in MoltenVK and ray tracing extensions
MoltenVK ray tracing is needed for truly portable modern VK code.

MoltenVK ray tracing

Please try to maintain and put more into MoltenVK

MoltenVK missing ray tracing support is a huge problem.

Need more work on MoltenVK

Fuller 1.3 support in MoltenVK. Ya'll have done an amazing job here already, and |
understand that resources and funding are tight as it is. Also having people comfortable
with both Metal and Vulkan I'm sure are not easy to find.

LunarG 2025 Ecosystem Survey Results 41

LUN/\RX:_ GPU Software Specialists

15. MoltenVK needs more investment

LunarG comment: It is known that the current Vulkan on Metal solution (MoltenVK) hasn't been
able to keep up with Vulkan as it progresses. For example, its support has not moved beyond
Vulkan 1.2 and it hasn't become a conformant implementation. LunarG is investigating ways to
help improve this situation.

Crash Diagnostic Layer

Hwd =

4

9.

The layer is easy to use, to configure and provides useful feedback in many cases.
| really like that there is such a tool!
Useful but not yet the same level of information as e.g. Aftermath
| generally haven't found it to be useful. Crashes seem to be somewhere deeper in driver
code that isn’t picked up.
just recently became aware of it, will use it to narrow down future crashes
I like it, altough in some cases | did not get much info in the dump (might be a
configuration issue or a missing extension on my nvidia 4xxx gpu).
Diagnostics are somewhat inconsistent
It was functionally unusable the one time | tried it. My SDK is a few versions out of date,
so maybe that has since changed.
a. LunarG comment: For the 3 previous comments, earlier versions of the layer had
these issues. They have since been fixed. Try it again!
that seems to be newer; we use nvidia only aftermath:-(

10. It caused issues on my driver. Haven't investigated yet.
11. In my case most of the time if | screw something up | end up killing the driver entriely

(nvidia) so i dont even try to use this one as it wouldnt catch anything i guess

12. I have not had a device lost since the layer came out

Inhibitors to being productive or effective during Vulkan App Development

oghkswd =

My Display Miniport Driver isn't developed enough to support a Vulkan client.

nothing really or not Vulkan related :)

Too many possible configurations to cover all devices

Nothing!

init a big graphic pipeline, and init lot of struct

There's a lot of stuff that needs to be repeated in different ways in different places. An
obvious example is pipeline layouts: once in API calls, once more in shader source, yet
again in a material system. This is understandable, but since all of the reflection options
are limited, it's difficult to just automate the problem away.

Drivers on anything but windows.

That Vulkan devices can suddenly be lost unreproducibly (VK_ERROR_DEVICE_LOST)
even without a programming error on my side.

LunarG 2025 Ecosystem Survey Results 42

LUN/\RX:_ GPU Software Specialists

10.
11.

12.

13.
14.
15.

16.
17.
18.

19.
20.

a. LunarG comment: Try using the Crash Diagnostic Layer (included in the Vulkan
SDK or found at_https://github.com/LunarG/CrashDiagnosticLayer
AMD Vulkan Compute is a huge problem for us... we currently turn it off on Linux and on
Integrated GPUs... we're still trying to figure out how to handle the issues... we would like
to expand our server compute offerings but this is basically blocking lot of work.
Invest more in AMD Vulkan Compute
AMD Vulkan Compute:
a. -works generally on Windows
b. -hastrouble on AMD Integrated GPUs on Windows
c. -hastrouble on all AMD GPUs on Linux
| keep saying it but our big issue is we are having problems with Vulkan Compute on
AMD Linux... I think it's driver problems on their end but it blocks lots of our plans.
c/ct+ itself
Limited resources on some less frequently used extensions
Shader Objects doesn't support raytracing + | would be happy if Shader Objects will get
more performance optimizations.
Has monolithic PSO - Metal/Direct3D12(may be LibGNM).
Nvidia/amd differences
gpu captures & replay, not smooth, specially when blocked by a single capture opened at
atime.
XCode.
Productivity impacts due to experience/knowledge
a. Lack of theorethical graphics knowledge
b. My very limited knowledge
c. Setting up a new project and synchronization
d. Bugs in my code, mostly. Right now | have a bug where every other frame, one of
my buffers (bound through BDA) is just... wrong. My atomic add adds to the
wrong place in the buffer. Existing tools like RenderDoc and GPU-Assisted
Validation haven't helped, running my code on Android just makes it crash on
startup, | don't know where to go from here to debug it
e. Not getting enough time to work on it..

Shader Compiler, Languages and related Tools

1.

slang
a. Ship with slang, and get perfect glsl to slang mappings as well as more
information for developers switching.
b. Invest more in slang
c. lwould like GLSL updates, or a stronger commitment to GLSL developers with
slang. Currently its perfect for HLSL, but subpar for GLSL, which is the opposite
of how a Khronos API should be. | get that most large code bases target HLSL,

LunarG 2025 Ecosystem Survey Results 43

https://github.com/LunarG/CrashDiagnosticLayer

LUN/\R)]

GPU Software Specialists

but being a second class citizen because you didn't historically focus on
Microsoft technologies is unfortunate.

d. "Slang. It's an amazing language but there are compilation bugs, weird-looking
SPIR-V generation, and all sorts of problems with reflection (ranging from an
incomprehensible API that takes far too long to get to first ~triangle~ "generated
a pipeline layout by reflection™, to an inability to query assigned variable defaults,
to all sorts of sharp edges when reflecting user attributes).

e. GLSL is dated and slang adoption is still annoying.

f. GLSL doesn't support rich annotations, and Slang's annotations are in theory
good, but in practice this part of the Slang project is still pretty limited and buggy.

g. Need to invest more in shader compilers (e.g. Slang)

h. I'm the principal developer on SDL's new GPU API. Overall I'm really pleased with
the state of Vulkan tooling right now. My only thought is that slang needs a clear
path for laying out descriptor bindings. Our shader system requires a particular
descriptor set layout and developers who try to use slang with SDL GPU run into
this problem. | don't personally use slang but it's a frequent complaint that | see.

i. Ireally dislike Slang and fact that HIP/Rocm and Opencl c++ don't compile to
vulkan SpIR-V.

j. It would help to have slangc be listed alongside dxc in the find Vulkan cmake for
easier build system integration

k. Someone really should make Rust bindings to Slang.

2. GLSL

a. Also GLSL has early support for all the new extensions but the language does not
support useful modern features

b. limitations of GLSL, poor integration of shading languages in the host language
(e.g. for structs shared between host & device, need to write the definition twice,
for shaders and for the host app)

c. | need single header shader compilation libraries for runtime so glsl shader code
could be loaded directly without needing to recompile them before outside the
application

3. DXC/HLSL

a. DXC bugs and quirks.

b. | need dxccompiler.so for Android, | still can't compile it.

c. improve HLSL to spirv translation

d. I need robust DXC support and bug fixes

e. More investment needed here:

i. Clang-HLSL, SPIR-V function calls and pointers

i. Clang-HLSL, SpIR-V function calls/pointers, forward progress.
f. Clang-HLSL not having enough resources
g. Lackluster development velocity of Clang-HLSL

4. Shading languages being universally terrible.
5. Invest more in SPIRV-cross

LunarG 2025 Ecosystem Survey Results 44

LUN/\RX:_ GPU Software Specialists

10.

11

15.
16.
17.

18.
19.
20.
21.
22.

23.

Uniform shader compiler to compile lot shader language to spir-v

No function pointers or goto statements in SPIR-V, and lack of forward progress it
guarantees

Lack of goto/function pointers in SpIRv, and forward progress it guarantees.
multiple shader languages: GLSL / HLSL / Slang

Being forced to external tools for compiling shaders.

. Shader languages (is inhibiting my productivity and effectiveness)
12.
13.
14.

SPIR-V cross bugs

SPIR-V Cross needs to be rewritten

spirv-reflect could have feature parity with spirv-cross as linking spirv-cross just for
reflection is a tad excessive

Add direct and simple support for compiling shaders from source to the API.

the lack of single-source programming environments similar to CUDA.

Runtime shader compilation and linking to a library that's required for it. (CMake +
FetchContent/CPM). Maybe | just haven't found a simple way to do that yet. Examples?
SPIR-V debugging is very cumbersome. https://www.khronos.org/spirv/visualizer/ does
not to that demand justice. It would be nice to have more aids, such as basic block
grouping and better explanations about various referenced inputs, types, and structs.
Invest more in Shader languages

Need better shader languages

Some more investment on spirv tools like spirv-link would be nice

I'd like to see a shading language that integrates better with the host-side language (e.g.
reuse struct definitions between shader & host code)

what ever glsl or hlsl etc. all the shading language can transform to spir-v use uniform
compiler.

Tooling

1.
2.
3.

Vulkan development tools have been great and helped solve many issues!
Debugging tools are not as useful/robust as dx12 equivalents
RenderDoc
a. Renderdoc not working with newest extensions.
b. Being unable to use RenderDoc
c. Validation and debugging tool support for descriptor buffers, especially
RenderDoc.
d. 1think last year, | would have said tools like RenderDoc and NSight not catching
up, but I think that's rapidly changing.
e. RenderDoc also needs to support RT, or we need to embrace a better alternative
more equipt to handle modern VK code.
f. Improving RenderDoc (it's not a part of Kronos, but it should be!) to catch up with
the latest additions to Vulkan.

LunarG 2025 Ecosystem Survey Results 45

LUN/\RX:_ GPU Software Specialists

g. Invest more in RenderDoc
h. I am mostly fine with what is available. Maybe GPU debugging? But RenderDoc
gets the job done for the most part.
Profilers
a. Lack of good cross-vendor profiling tools
b. Profilers like RGP and other performancettools (RGA) that are easier to set up
and more robust
Device Lost

a. Diagnosing device lost or fence timeouts.
Shader debugging

a. lack of good shader/device emulation/debugging

b. Better shader debugging tools

c. | hope there will be improvements to the shader debugging environment.

especially for compute shaders.

d. lack of shader/register level profiling tools for older hardware
Bindings

a. Official Rust bindings for Khronos side projects like KTX would be great.

More support for Rust bindings,

Funding/support for https://github.com/ash-rs/ash

The Vulkano team needs some love.

modern C++ support

Official support for safer languages like Rust

Need Official Rust bindings.

Also, when creating tools, | think it's a mistake to provide these tools as c++
libraries with no c interfaces. Vulkan is used in a lot of languages, not just C.
Having to interop with C++ is extremely annoying, and could be avoided if helper
libraries simply were made in plain ol C, or at least provided an option. As it
stands we end up having to remake certain things like vkbootstrap in different
langauges, even though those can provide value to people generally.

GPU debugging (LunarG comment: To do good cross-GPU debuggers, the IHVs would
need to expose GPU characteristics to the Vulkan API to enable such tools. This won't
happen due to the proprietary nature of IHV GPUs. So GPU specific debuggers will be
unique to each IHV).

a. Lack of an actual GPU execution debugger like we have on the CPU. Nvidia
recently released a beta debugger in this vein for Nsight Graphics, but naturally it
only supports their GPUs.
| want GPU analyzers for linux!

GPU analyzers for linux

lack of GPU debuggers

Invest in GPU analyzers for linux

Invest more in Debugging tools (the existing ones are awesome, but there's a gap
for a real execution debugger).

S@ o ao0CT

0 Qoo0CT

LunarG 2025 Ecosystem Survey Results 46

LUN/\RX:_ GPU Software Specialists

9.

10.
11.

12.
13.
14.
15.

16.
17.

18.

19.
20.

21.

22.

g. There should be a single vendor independent debugging tool that should feature
all features to debug all kinds of stuff: shader execution, rays, models, PCI and
memory usage, basically mix of RenderDoc, NSight and RDP

Vulkan Introspection Layer

a. | found the Vulkan introspection Layer (https://github.com/nyorain/vil) a really
convenient tool for real-time debugging.

b. There is this Vulkan Introspection Layer (https://github.com/nyorain/vil) that is
Very effective, as it provides real time debugging capabilities, and it also
supports ray tracing (visualizing the acceleration structures). But its not that
active in development and it has a few instability issues. Still its very good, Could
Khronos help out in some way to develop this tool?

c. Invest more in Vulkan Introspection Layer maintanance, (and potentially
integration into vkconfig) (https://github.com/nyorain/vil)

Video and compute debugging tools with no graphics pipeline

Debugging applications that use advanced features (descriptor indexing, buffer
references and ray tracing) is very hard through the lack of good cross platform tools
Most time consuming issue is finding lost resources. When was a resource create,
destroyed and handle reused. Could be automated in a layer....

Doing compute shader debugging, it can be tedious at times thought debugPrintf helps
tooling quality and out-of-dateness on fedora linux

Tools and libraries that are largely unrelated to Vulkan but are necessary such as Visual
Studio which is frequently being frustrating or figuring out libraries to do model loading
Inabillity to emulate different devices and OSes

Official (or recommended) tools that provide an abstraction over memory allocation,
descriptor allocation, synchronization and device bootstrap.

Better debuggers that can help when my code is technically spec-compliant but still
buggy. I'd like an emphasis on multi-frame debugging, since a lot of modern rendering
techniques use information from previous frames to inform the current frame.
RenderDoc's Ul could also use a bit of work, | constantly feel like | have to hunt through
three or four separate tabs to get an idea of what my renderer is doing. Maybe a more
visual representation of the data flow in my frame would help

Software emulation of extensions

would be nice to have a testing framework for lib developers where you can say
apidump between these 2 points™ and then compare against a predefined dump of all
the functions, structs and their values, extra points for running under mockicd so you
don't need drivers or a device for a Cl environment

more investment in the gpu captures, gpu captures for compute (using renderdoc), never
fun with vulkan as far as i've seen

Areas where more investment would be useful:

a. Invest more in game engines like Godot

b. Invest more in device emulation

c. profiling tools, examples, good practice examples

LunarG 2025 Ecosystem Survey Results 47

LUN/\R)]

Samples

GPU Software Specialists

a cross-vendor/platform frame-debugger (like Renderdoc) or capture-tool with
raytracing support and ability to visually debug raytring workloads, visualize
Acceleration-structures (like e.g. nsight)
Raytrace debugging (nsight sortof covers this on nvidia gpus. Also its partly
ongoing in renderdoc, as it now can capture with raytracing enabled which is a
huge step)
Graphic debuggers.
Single-source C++ programming environment similar to CUDA where | don't have
to manage the boundary between CPU and GPU (in the process, eliminating the
need for a shading language).
It would also be awesome if Sascha's device registry (which is already
indispensable) supported richer queries and maybe even cross-referenced itself
with the Steam hardware survey or something like that so that it would be easier
to answer "'what amount of compatibility am | giving up if | require feature X
type questions.
Debug tooling
I'm primarily working with headless (no surface) rendering and calculations,
profiling tools are difficult, limited or even impossible to use in such scenario.
| am missing a tool for showing the content of buffers and images in GPU
memory during application debugging. | believe it could be implemented as a
layer. That is the reason | asked one of my students at my university to try to
make a prototype. He is implementing for me a Vulkan Debugging Tool
(https://github.com/Vulkan-FIT/#vulkan-debugging-tool). He is expected to work
one more year on it, but the prototype already tells me that it is possible. The idea
is to step through the code in Microsoft Visual C++ and see in real time the
content of buffers and images of the application being debugged. Feel free to
contact me about this tool on peciva@fit.vut.cz .
Conformence testing & Validation layers

i. Both are good, but improvements here would benefit all."

1. More code samples

2. Synchronization is very hard to understand. Fully working examples with complex cases
should be available.

3. update examples to vulkan-hpp.

Tutorial

1. 1think it would be useful if the Vulkan Tutorial just used vkconfig for validation layers
instead of enabling them in code.

LunarG 2025 Ecosystem Survey Results 48

LUN/\RX:_ GPU Software Specialists

a. Comment from the Khronos Vulkan Tutorial team: Adding this as an option to the
programmatic layer setup is feasible. It will be investigated. See
https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60

"Vulkan Tutorial" using vkconfig instead of enabling layers in code.

More tutorials on intermediate features. Mesh shaders, the different methods for
descriptors, etc

If you want to learn the basics, the Vulkan Tutorial is great. However, if you want to learn
newer or advanced concepts, it's not always easy to find good materials. The
specification is huge and hard to read; it'd be nice to have some more guides, tutorials, or
materials that make learning easier.

Good official tutorials and guides for Modern Vulkan Features. The spec is nice, but a
written guide is a lot nicer introduction

| think the most important thing is to make Vulkan more accessible. Vulkan can be a bit
overwhelming even after completing the tutorial, and it'd be nice to have some more
tutorials in a centralized way to get a bit more used to the API. Not only showing how |
can make something work, like in a sample, but why should | use it this way. I'd love to
see some more informal guides, like how | should do certain things, to make them
performant. Videos can be good, and there are some great ones, but if | need something
specific, | can't really search if it contains that thing, so | either watch the full 1-hour
video or search for another material. But on the positive side, | can see that there are a
lot of videos, and there is an effort to make it more accessible.

| like the tutorials on youtube. | also took a tutorial on Udemy, by Galea. This stuff is
really hard to learn by myself.

More tutorials for beginners would have been nice.

Documentation

I need documentation and how the many extensions relate

Fuller documentation and more beginner friendly tutorials/samples

Vulkan is love! In general the documentation and best practices should reflect the latest

version

| very need spirv-reflect doc.

spirv-reflect online doc like docs.vulkan.org

| feel Vulkan is a very important project for the gfx community, but | fear big industry

players will try to interfere with the viability of it all, just as they did with OpenGL - making

the future uncertain for short, and in turn with consequences on the adoption of Vulkan

by programmers.

a. Therefore, thorough, open, user-friendly documentation (whatever the mileage of

readers), could well be a powerful safe guard for the future of the API&toolchain.
I'm saying this because I've noticed, in almost ten years of Vulkan, the "official™
documentation effort (beyond just specs) only sprung up relatively recently, it
was a bit of a (pleasant) surprise, but also worrying to a certain degree."

LunarG 2025 Ecosystem Survey Results 49

https://github.com/KhronosGroup/Vulkan-Tutorial/issues/60

LUN/\RX:_ GPU Software Specialists

7.

10.

11.

12.

13.

14.

15.

16.
17.
18.

like there to be more GLSL documentation that's specific to Vulkan. A lot of GLSL

documentation is specific to OpenGL and there are things that apply to Vulkan and

things that don't, which makes it more confusing. Sascha Willems' examples pertain

more to the Vulkan API itself but not the GLSL side of things so much - even though

there are some GLSL shaders. There's no GLSL-for-Vulkan documentation is what | think

I'm trying to say. :]

| feel I lack User guides as part of the Vulkan documentation, per-Vulkan version, as

things apparently changed substantially between 1.0, 1.1, ... up to 1.4. Such guides

should point clearly into best practices for a given version, and the overall

direction/roadmap for Vulkan by Khronos (a bird's eye view). Same goes for extensions

and stuff moved to core: I'd need a clear map of things.

Not enough documentation is available which explains the vkspec, similar to the notes in

the vkspec.

not enough documentation

The red book is terrible. Beyond Vulkan Tutorial, good reading material is quite rare

Good extensive and easy documentation, preferably in tutorial format that is not just

specification like but provides a story and takes you to a result through big picture and a

complete story/context.

Navigating the documentation could be easier. The new documentation website is a

good improvement though.

Specification load speed

a. The Vulkan Documentation should be much easier to navigate - it shouldn't take a
while to load and be one big huge document. It should be individual separate
pages like the registry.
Slow loading specs website
c. Full online specification loading time is extremely slow. It's not an issue if you

need to open the web page just once and keep it opened in your browser, but
when you frequently jump to the full spec with the hash to a section through the
hyperlinks from other pages, it's a painful experience.

i. LunarG comment: If you were linking to the full online specification from a
validation layer error message, the validation layer error messages now
link to an Antora site version of the Vulkan specification and load quickly.
This became available with SDK version 1.4.304.1

Lack of a central "best practices” store for Vulkan techniques. | am constantly
second-guessing myself when implementing basic features like async image uploading.
Quality online documentation, the current system is hard to navigate

Lack of optimisation recommandation inside the docs

Low amounts of fleshed out documentation in comparison to OpenGL (previous
toolchain) such as the vulkan docs being very barebones and most developers having to
rely on the registry or third-party tutorials/codebases

LunarG 2025 Ecosystem Survey Results 50

LUN/\R)]

GPU Software Specialists

19. I'm a professional gfx programmer in the Games industry (I work on d3d12), | know | can
handle the learning curve for Vulkan fairly well (just starting down that road, for personal
projects mostly) - but | fear getting bogged down in outdated tutorials, books and such."

Vulkan API and Specification

1. Happy with Vulkan

a.
b.

o Ta oo

Vulkan is pretty tight, yo.

Thank you all for making and maintaining Vulkan. It's the best of both GL and
D3D without all the garbage, and I'm elated that it exists.

| am incredibly more productive than when | wrote OpenGL. The first steps are
very hard, because of the API's explicitness inducing a lot of verbosity. After
becoming more familiar with the API (and introducing abstraction layers in the
framework I'm using), the workflow becomes both smooth and mechanical
(syntactically similar across functionalities).

Thank you for your hard work!!!

"Thank you for Vulkan!

We will improve our 3D graphics using Vulkan API

i love vulkan, khronos, opengl,..i love you :)

Vulkan forever, OpenGL must die as soon as possible"

I'm super new, but | like vulkan so far.

| can't really pinpoint something, as | have been quite comfortable with Vulkan
lately. | think the roster of features that have been added to the core in 1.2 and
1.3 improved Vulkan heavily.

2. Not happy with Vulkan

a.

S R

Vulkan is exactly the same as OpenGL, except with no sensible defaults and
fewer features.

Vulkan is garbage and is killing your organization

Khronos prevents me from being productive and effective with my application
development

All Vulkan succeeds in doing is ensuring industry regulatory capture from larger
developers by adding needless complexity to programming GPUs.

The sooner it is abandoned in favor of separate, simpler, APIs for tiled and
desktop class GPUs, the sooner we can get back to actually being productive
again."

Abandon the API, there is no fixing it.

It's too late - I've moved to DX12

Release OpenGL 5 and drop the failed Vulkan API.

vulkan is annoying to use.

Improve OpenGL instead.

that's why im currently using OpenGL

LunarG 2025 Ecosystem Survey Results 51

LUN/\R)]

GPU Software Specialists

3. Verbosity, complexity, and bloat

a.

b.
C.
d

Verbosity of the API (esp when just trying to explore new extensions/features),
The verbosity & complexity of the API, and runtime pitfalls such as implicit layers.
Legacy bloat in the Vulkan spec
The lack of a standardized mid-level APl is a major issue to independent
developers who are not dedicated entirely to graphics programming. Vulkan is
proving too complex for production use without dedicated engineers for it.
I'dDespite having used most versions OpenGL and DirectX and currently have a
reasonable Vulkan render back end, | think Vulkan is still too complex,
unnecessarily complex for most developers. An option for automatic
synchronization and simplified handling of things like SwapChains could help,
even if optimal performance is sacrificed. | understand why one size cannot fit
all. With more responsibilities than ever, the graphics programmers job never
ends now.
it was difficult to begin with, steep learning curve, but after a while-becomes
challenging in a good way, i believe i am productive enough
Lack of experience and know-how. Thinking about how to abstract things is
getting easier with more experience.
Image layout transitions are a bummer. For now I'm just transitioning images to
IMAGE_LAYOUT_GENERAL for now, and when mobile becomes a higher priority
I'll start thinking more about it.
It is a little hard that there are multiple active ways to do similar things.
i. -descriptor pools / buffers

i. -render pass/dynamic rendering

iii. - pipelines / shader objects

iv. -timeline / binary semaphores
- storage buffers as function arguments
- templates
| hope vulkan can become more beginner friendly, without cutting back on the
amount of boilerplate. | think the amount of granularity in setting up a renderer is
great, but sometimes can go unexplained or left to a black box. | hope the docs
can be filled out, registry made more friendly to beginners, maybe suggesting
fixes or common mistakes made in either the validation layers or registry links,
and make the roadmap more aggressive with its feature set.

. Itis difficult to understand the correct usage of VkSubpassDependency. It's more

difficult to understand depending on the situation like MSAA or subpass(input
attachment).

it is hard to deduce best practices, many examples for boilerplate but not many
for practical uses, modern techniques allow simplified development but they are
hard to find.

I'm a beginner so my biggest problem is figuring out the correct way to do things.
Knowing about things like synchronization2, the various maintenance extensions,

LunarG 2025 Ecosystem Survey Results 52

LUN/\R)]

GPU Software Specialists

etc is a bit harder when leaning it all at once. You have to learn the old way, the
new way and the reasons for the change..

The amount of pNext structures making programming and navigating through
the spec hard and unclear. The vulkan APl is piling up extension after extension
and this problem is becoming worse and worse.

4. Feature requests

a.

e.

Standardization of the VK_NV_ray_tracing_motion_blur extension, so it can be
used on non-nvidia hardware

We need multi-level bvh for ray tracing and get more feedback from bvh hits (e.g.
diagnostics about how often parts of bvh are hit so we could stream in/out bvh
data for massive scenes)

| want Present timing on Windows and Direct Storage extension

Invest more on unifying raytracing specification of vulkan.

I am missing two things in Vulkan API:

i. (1) -Indices are just 32-bit. It means they cannot be used for the indexing
all the vertices in GPU memory. If they would be represented by 64-bit
value, it could be much more general solution allowing for using it as
pointer to the whole GPU memory. This would provide quite flexibility for
CAD applications handling huge models with many parts scattered
through the whole gpu memory. This is related to another problem: If
indices are scattered through the whole gpu memory, | cannot submit
batch of indirect command structs by a single
vkCmdDrawIndexedIndirect call, because | have to update index buffer
binding before processing of each indirect command struct. | would like
to drop the idea of binding index buffer and to have pointer (or
VkDeviceAddress) to the first index stored in the indirect command struct.
This way, indices might be stored anywhere in gpu memory and | could
easily make single vkCmdDrawlIndexedindirect call for one hundred of
thousands indirect command structs as opposite of one hundred of
thousands pairs of draw calls interleaved with vkCmdBindindexBuffer
calls. Even recording it is slow.

ii. (2)-Itwouldbe so cool if | would not need to bind descriptors, but could
access them directly by pointer. Something like the buffer_reference used
in GLSL can do for direct memory access (without binding of buffers).

Please make descriptor buffer extension core and focus on forcing vendors to
develop drivers for older gpus(for example intel doesnt support vulkan on some
not so old mobile gpus on windows)

| would be happy if descriptor Buffer had promoted to API, please and more
dynamism, but take into account and first place performance. More low-level
control and less high-level abstractions. Developers are happy when they have
more control how they managing bytes in memory :)

LunarG 2025 Ecosystem Survey Results 53

LUN/\R)]

h.

GPU Software Specialists

Timeline semaphores not being able to extend to swapchain synchronization is
really a bummer. It means you cannot universally adopt them, which means an
extra place for things to go wrong.

Possibly a common abstraction for "work graphs", like a cross-vendor version of
VK_AMDX_shader_enqueue

5. Modernization/Deprecation

a.

b.

Yes. Stop releasing 100s of extensions every single year. | work with Vulkan
almost daily and even | can't keep up.

Also, start deprecating stuff sooner rather than later. Implement the deprecated
craft in some layer for backwards compatibility and clean the API."

| am strongly in favour of a Vulkan 2.0 release that removes all legacy parts of
the Vulkan API

Vulkan is piling up on new features, that are replacing old patterns, and despite
its good seeing the api getting more modern, at the same time it is making things
more confusing. As an example see descriptor buffers, push descriptors and
normal descriptor sets. Official guides still reference different patterns, and is
unclear which ones are actually recommended nowadays. | think a Vulkan 2025
guide is needed, illustrating the modern patterns which are recommended to be
uses, assuming modern desktop hardware.

Make Vulkan simpler, deprecate and remove, lots of controls are unnecessary
and or could be simplified while leaving the more advanced door open

6. Overall with 1.2 extensions and onward the developer experience has vastly improved.
Adding more options to dynamic rendering is always helpful but extending what can be
done on the GPU with more functions would be nice (for example providing a list of
scissors and changing scissor state with a single draw indirect call would be a nice
addition)

7. Direct3D12, Metal has no compatibility for older API, and has success.

© ©

Timeline semaphore support for swapchains
1. Bad API design
a.

- Legacy from OpenGL VkFrameBuffer. Direct3D12/Metal has no this abstraction
atall.

- VKkPipelineLayout Direct3D12 has no this abstraction at all.

- GLSL this Is poor choice for Vulkan. HLSL should be first language for Vulkan
1.0 and later, instead of legacy GLSL

- numeric binding for Vertex Atrributes instead of Semantic names like as in
Direct3D12. We can create extension

VK_EXT_HLSL_semantic, it similar for Direct3D12
D3D12_INPUT_ELEMENT_DESC:

typedef struct VkVertexInputElementDescEXT {

const char* semanticName;
uint32_t semanticlndex;
VkFormat format;

LunarG 2025 Ecosystem Survey Results 54

GPU Software Specialists

uint32_t inputSlot;

k. uint32_t alignedByteOffset;

. VkVertexinputRate inputSlotClass;
m. uint32_t instanceDataStepRate;
n. } VkVertexinputElementDesc;
p

—

I
0.

. // VK_.STRUCTURE_TYPE_INPUT_LAYOUT_DESC_EXT
g. typedef struct VkinputLayoutDescEXT {
r

} VkStructureType sTyps;

S. const void* pNext;

t const VkVertexIinputElementDesc* pinputElementDescs;
u. uint32_t numElements;

v. %,

10. 2. Vulkan features

a. - Where Tile Shading for Vulkan on Mobile Platform ? See Metal API

b. -Where Mesh Shaders for Mobile platform ? see Apple A15 for iPhone 13 and
later

c. - When we will have Work Graph Shaders KHR, core ?
https://github.com/KhronosGroup/Vulkan-Docs/blob/main/proposals/VK_AMDX
_shader_enqueue.adoc

11. 3 .4 Unnecessary extensions for legacy OpenGL compatibility

a. VK_EXT_shader_objects - Again OpenGL legacy compatibility ? The modern
successful Graphics API

12. VK_EXT_provoking_vertex Again OpenGL legacy compatibility ?
13. I'm still very new to it so mainly just learning the API. In particular, specifics about

changing of approaches to solving problems from OpenGL to Vulkan that are more
useful than a basic hello triangle. For example, migration from multi draw indirect calls

to an equivalent Vulkan solution would be welcome.

14. safer APIs

Android

1.

w

Feature fragmentation across Android devices, especially our need for supporting years

old devices without driver updates

Driver bugs on some mobile devices

More debug tools on mobile platforms

Vulkan on Android

a. Bad Driver support, Developing of OpenGL ES/Vulkan Drivers spend a lot of time

for developers, we need to remove OpenGL ES's native legacy drivers from
Android by replacing Angle via Vulkan.

LunarG 2025 Ecosystem Survey Results 55

LUN/\RX:_ GPU Software Specialists

Miscellaneous

10.
11.
12.
13.
14.
15.

16.

I'm a little unsure how the arch Linux package works but | assume it uses the tarball or
will quickly change so it should be fine

Update arch packages to 1.4

live debugging (i.e. not frame capture but debugging the live program, like nsight shader
debugger, rocgdb)

It would be nice if the OpenXR runtime and the VVL could (optionally, of course)
~conspire~ cooperate to mute the absurd amount of validation spam some of the XR
runtimes generate. (I would say "make the XR vendors make their runtimes
validation-clean, but | don't believe in fairy tales.)

Improve the Loader-ICD interface. Vulkan's ability to support extensions is nice, but the
D3D UMD is so much easier to implement.

better vulkan wayland support

More and more extensive/wider integration with various exiting libre/opensource
graphics tools and programming tools

Our current workaround is to have the server only GPU accelerate on Nvida, which
defeats the purpose of Vulkan Compute. It's primary advantage is cross hardware, if you
wanted Nvidia compute only why not use CUDA.

Continue the good work

Cute anime girl representation, a Vulkan-tan

more cowbell

| found the numbers of Vulkan Video talks disproportionately high at this year's
Vulkanised

Better support for older Linux distributions (with older GLIBC), e.g. we have to bundle an
old glslangvalidator with our app to compile shaders on the fly.

"As mentionned, I'm just starting my Vulkan journey, although | do work professionnally
with d3d12, and I'm also an OpenGL old timer.

The questtion about the important platform for the fututre was missing Linux/RISC-V, |
see this one becoming very important in the future.

"All I want is OpenCL 1.2 with triangle rasterisation and bytecode kernels.

LunarG 2025 Ecosystem Survey Results 56

