
Creating Portable Vulkan
Applications Using DevSim
Using the Device Simulation Layer to target a hardware ecosystem

Jeremy Kniager, Christophe Riccio, LunarG
September 2021

Introduction 3
Simulation vs. Emulation 4
Basic Operation 4
Enabling Devsim using Vulkan Configurator 5
Command Line Section 7

Config File Anatomy 7
Basic Config File Design 7
Config File Heading 7
Property, Feature, and Limit Data 8

Individual Structs 8
Properties/Limits 8
Features 9
Arrays of Structs 9
Special Properties 9

Devsim Settings 10
Devsim JSON configuration file 10

Setting Key: filename 10
Environment Variable: VK_LUNARG_DEVICE_SIMULATION_FILENAME 10

Debug Enable 11
Setting Key: debug_enable 11
Environment Variable: VK_LUNARG_DEVICE_SIMULATION_DEBUG_ENABLE 11

Exit on Error 11
Setting Key: exit_on_error 11
Environment Variable: VK_LUNARG_DEVICE_SIMULATION_EXIT_ON_ERROR 11

Emulate VK_KHR_portability_subset 11

1

Setting Key: emulate_portability 12
Environment Variable: VK_LUNARG_DEVICE_SIMULATION_EMULATE_PORTABILITY
12

Modify Device Memory Flags 12
Setting Key: modify_memory_flags 12
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_MEMORY_FLAGS 12

Modify Device Extension list 12
Setting Key: modify_extension_list 12
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_EXTENSION_LIST 12

Format Modification 12
Modify Device Format list 12

Setting Key: modify_format_list 13
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_FORMAT_LIST 13

Modify Device Format Properties 13
Setting Key: modify_format_properties 13
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_FORMAT_PROPERTIES 13

Modify Device Surface Formats 13
Setting Key: modify_surface_formats 14
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_SURFACE_FORMATS 14

Modify Device Present Modes 14
Setting Key: modify_present_modes 14
Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_PRESENT_MODES 14

Array Combination Modes 14

Summary 15

09/13/2021 Creating Portable Vulkan Applications Using DevSim 2

Introduction
The Vulkan API aims to be portable and lightweight, allowing developers to write applications
that can be used on multiple platforms and run efficiently. To implement these two goals, Vulkan
provides functions and structs to query data about the underlying platform on which the
application is running, and leaves it up to the developer to write a correct application that works
within the platform’s limitations.

The validation layer assists developers in checking their code for improper use of Vulkan, but
these checks take into account only the limits of the test platform. To ensure an application
properly handles multiple platforms, these checks must be run on all platforms of interest to the
developer. Combinations of GPUs, ICDs, drivers, and operating systems to name a few factors
create an exponential number of possible test platforms, which is infeasible for a developer to
obtain and maintain.

The Device Simulation Layer (also called Devsim) seeks to mitigate this obstacle by providing a
method to simulate arbitrary property, feature, and limit combinations representing different
platforms for specific test cases. For example, it can be configured as though the application is
running on a device with the minimum properties, features, and limits defined by the Vulkan
specification.

Devsim does this by modifying the query data provided by the Vulkan driver to the Vulkan
application by the query functions to simulate more restrictive capabilities to ensure the
application properly handles reported capabilities.

Some helpful Devsim features that will be discussed throughout this document are:
1. Simulation vs. Emulation
2. Basic Operation of the Devsim Layer
3. Premade configuration files:

a. Specification minimum: Minimum properties, limits, and features based on the
Vulkan 1.0, 1.1, and 1.2 specifications

b. Portability minimum: Minimum properties, limits, and features for portability
subset devices based on the Vulkan 1.0, 1.1, and 1.2 specifications.

c. Desktop portability: Minimum properties, limits, and features based on what is
effectively found in actual hardware for Vulkan 1.0 and 1.2.

4. Improved integration of JSON files from gpuinfo.org
5. Added support for Vulkan 1.1 and 1.2 core capabilities
6. Support for surface query modification:

a. Surface capabilities
b. Surface formats
c. Present modes

09/13/2021 Creating Portable Vulkan Applications Using DevSim 3

7. Emulation for the VK_KHR_portability_subset extension
8. Array combination modes for better modification of queries that return arrays

Simulation vs. Emulation
Devsim is shorthand for “Device Simulation Layer.” The primary function of Devsim is simply to
simulate the limits, properties, and features of a device, i.e. modifying device responses to
query function calls by the application. Of course, the underlying device or driver function are
never actually changed, they merely appear to have the limits, properties, and features of a
different device or driver.

This is different from emulation that would change the actual behavior of the underlying device
or driver to match that of a different device or driver.

In all but one case, Devsim simulates changes and leaves it up to the validation layer to inform
the developer about functions that do not adhere to the proper limits.

The one exception is portability subset extension emulation, which causes Devsim to add the
VK_KHR_portability_subset extension to the device extensions list, and pre-populate the
VkPhysicalDevicePortabilitySubsetPropertiesKHR and
VkPhysicalDevicePortabilitySubsetFeaturesKHR structs provided by said extension with
default values.

Basic Operation
Before using Devsim, we must have a config JSON file on our computer to represent the Vulkan
capabilities we wish to simulate.

The Vulkan SDK contains sample and minimum config files, which are good starting points
when testing applications with Devsim.

Files representing real world devices can be downloaded from https://vulkan.gpuinfo.org/, which
is a database maintained by Sascha Willems.

There are two methods for enabling the layer: 1) use of the Vulkan Configurator and 2) use of
the command line.

09/13/2021 Creating Portable Vulkan Applications Using DevSim 4

https://vulkan.gpuinfo.org/

Enabling Devsim using Vulkan Configurator
For Vulkan desktop developers convenience, it is highly recommended to use Vulkan
Configurator when setting up layers for your system, especially layers with many different
settings like the Devsim layer. VkConfig (Vulkan Configurator) is included in the Vulkan SDK.

When you open the VkConfig application, you will be greeted with the following window.

Select the “Portability” built-in configuration from the “Vulkan Layers Configurations” list.

This configuration includes the Khronos Validation Layer and the Device Simulation layer.
To the right, we can see the layer settings.

09/13/2021 Creating Portable Vulkan Applications Using DevSim 5

Hide the Khronos Validation Layer setting for now by clicking the carrot next to
VK_LAYER_KHRONOS_validation.

Now, copy-paste the path of your config file into the “Devsim JSON configuration file” textbox
and uncheck the “Emulate VK_KHR_portability_subset” option.

You should now be able to run your Vulkan application with Devsim active.

For more information on VkConfig, click here to refer to the LunarG documentation
(https://github.com/LunarG/VulkanTools/blob/master/vkconfig/README.md).

09/13/2021 Creating Portable Vulkan Applications Using DevSim 6

https://github.com/LunarG/VulkanTools/blob/master/vkconfig/README.md

Command Line Section
The Vulkan loader has environment variables for enabling layers. These variables are
VK_LAYER_PATH which is used to manually set the loader’s search path for layers, and
VK_INSTANCE_LAYERS which is used to set active layers and in what order they should be
called.

The Devsim layer’s name is VK_LAYER_LUNARG_device_simulation. When turning it on, make
sure it runs closest to the driver, since we want all layers and applications to see the simulated
limits instead of the real limits.

Set the VK_INSTANCE_LAYERS environment variable to:
VK_INSTANCE_LAYERS=<other layers>:VK_LAYER_LUNARG_device_simulation.

Next, we need to point Devsim to our desired JSON config file.

You can point to the desired config file with the VK_LUNARG_DEVICE_SIMULATION_FILENAME

environment variable by setting it to the path of the JSON config file.

From here, we can run our application and get the simulated values.

Config File Anatomy

Basic Config File Design
Devsim config files use the JSON format to store data about a simulated device. In the past,
these values were strictly defined by JSON schemas hosted at
https://schema.khronos.org/vulkan/. The use of these schemas is rather clunky and awkward,
requiring multiple files to describe different data for the same device.

Recently, Devsim was updated to attempt to read all supported structs from any file using a valid
schema, allowing all device capabilities to be defined in a single file.

Special cases are also made for the format used by JSON files found at gpuinfo.org.

Config File Heading
The only required property in a Devsim config file is the “$schema” property which tells the layer
that the file is meant to be a Devsim config file. Though it can be set to any of the schemas at
https://schema.khronos.org/vulkan/ it is recommended that the value be set to

09/13/2021 Creating Portable Vulkan Applications Using DevSim 7

https://schema.khronos.org/vulkan/
https://vulkan.gpuinfo.org/
https://schema.khronos.org/vulkan/

“https://schema.khronos.org/vulkan/devsim_1_0_0.json#” as all other schemas
have been deprecated.

Devsim also allows for comments in the file using the “comments” property. This property is
defined as a JSON “object” in the schema, and can be filled with whatever properties the user
desires.

Example:
{

“$schema”: “https://schema.khronos.org/vulkan/devsim_1_0_0.json#”

“comments”: {

“title”: “Example Devsim config file”,

“desc”: “This file serves as an example for comments in a Devsim

config file.”

“version”: 1

}

}

Property, Feature, and Limit Data
The following properties are used to set property, feature, and limit data for the simulated device
represented by the config file. Brackets “[]” represent an optional portion of the property as
Devsim will read in the data with or without that part of the struct name.

Individual Structs

Properties/Limits
- VkPhysicalDeviceProperties
- VkPhysicalDeviceDepthStencilResolveProperties[KHR]
- VkPhysicalDeviceSubgroupProperties
- VkPhysicalDeviceDescriptorIndexingProperties[EXT]
- VkPhysicalDeviceFloatControlsProperties[KHR]
- VkPhysicalDeviceHostQueryResetFeatures[EXT]
- VkPhysicalDeviceMaintenance3Properties[KHR]
- VkPhysicalDeviceMultiviewProperties[KHR]
- VkPhysicalDevicePointClippingProperties[KHR]
- VkPhysicalDevicePortabilitySubsetPropertiesKHR
- VkPhysicalDeviceProtectedMemoryProperties
- VkPhysicalDeviceTimelineSemaphoreProperties[KHR]
- VkPhysicalDeviceMemoryProperties
- VkSurfaceCapabilitiesKHR

09/13/2021 Creating Portable Vulkan Applications Using DevSim 8

https://schema.khronos.org/vulkan/devsim_1_0_0.json#
https://schema.khronos.org/vulkan/devsim_1_0_0.json#

Features
- VkPhysicalDeviceFeatures
- VkPhysicalDevice16BitStorageFeatures[KHR]
- VkPhysicalDevice8BitStorageFeatures[KHR]
- VkPhysicalDeviceBufferDeviceAddressFeatures[KHR]
- VkPhysicalDeviceDescriptorIndexingFeatures[EXT]
- VkPhysicalDeviceImagelessFramebufferFeatures[KHR]
- VkPhysicalDeviceMultiviewFeatures[KHR]
- VkPhysicalDevicePortabilitySubsetFeaturesKHR
- VkPhysicalDeviceProtectedMemoryFeatures
- VkPhysicalDeviceSamplerFilterMinmaxProperties[EXT]
- VkPhysicalDeviceSamplerYcbcrConversionFeatures[KHR]
- VkPhysicalDeviceScalarBlockLayoutFeatures[EXT]
- VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures[KHR]
- VkPhysicalDeviceShaderAtomicInt64Features[KHR]
- VkPhysicalDeviceShaderDrawParametersFeatures
- VkPhysicalDeviceShaderFloat16Int8Features[KHR]
- VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures[KHR]
- VkPhysicalDeviceTimelineSemaphoreFeatures[KHR]
- VkPhysicalDeviceUniformBufferStandardLayoutFeatures[KHR]
- VkPhysicalDeviceVariablePointersFeatures[KHR]
- VkPhysicalDeviceVulkanMemoryModelFeatures[KHR]

Arrays of Structs
These properties are arrays that contain structs instead of individual structs.

- ArrayOfVkQueueFamilyProperties
- ArrayOfVkFormatProperties
- ArrayOfVkExtensionProperties
- ArrayOfVkSurfaceFormats
- ArrayOfVkPresentModes

Special Properties
These are structs that are not directly linked to any struct defined in the spec, but contain Vulkan
properties, features, and limits that are defined by the spec. Some of these structs are also part
of the format at gpuinfo.org.

- Vulkan12Properties
- Vulkan12Features
- core11

- features: Equivalent to a VkPhysicalDeviceVulkan11Features struct
- properties: Equivalent to a VkPhysicalDeviceVulkan11Properties struct

- core12

09/13/2021 Creating Portable Vulkan Applications Using DevSim 9

https://vulkan.gpuinfo.org/

- features: Equivalent to a VkPhysicalDeviceVulkan12Features
struct

- properties: Equivalent to a VkPhysicalDeviceVulkan12Properties struct
- surfacecapabilites: Please note the missing “i” at the end of “capabilities.” This is how the

property is spelled in the GPUinfo format.
- surfaceformats: Equivalent to ArrayOfVkSurfaceFormats
- presentmodes: Equivalent to ArrayOfVkPresentModes

For more complete examples of Devsim config files, please refer to the sample files at
https://github.com/LunarG/VulkanTools/tree/master/layersvt/device_simulation_examples/sdk_s
ample_configs.

Devsim Settings

Devsim JSON configuration file
This setting lets the user set the path to one or more config files to provide Devsim with
simulation limits. To set multiple config files, provide a string of paths each separated by the
system separator. Later files in the list override the values of former files in the list.

By default this setting is an empty string which will cause Devsim to output an error if it is not set
to a real file.

Setting Key: filename

Using a vk_layer_settings.txt file, the separator is a comma(,):
Example:
lunarg_device_simulation.filename = config_1.json,config_2.json,config_3.json

Environment Variable: VK_LUNARG_DEVICE_SIMULATION_FILENAME

On Unix based systems, such as Linux or macOS, the separator is a colon(:) :
Example:
VK_DEVSIM_FILENAME=config_1.json:config_2.json:config_3.json

On Windows systems, the separator is a semicolon(;) :
Example:
VK_DEVSIM_FILENAME=config_1.json;config_2.json;config_3.json

09/13/2021 Creating Portable Vulkan Applications Using DevSim
10

https://github.com/LunarG/VulkanTools/tree/master/layersvt/device_simulation_examples/sdk_sample_configs
https://github.com/LunarG/VulkanTools/tree/master/layersvt/device_simulation_examples/sdk_sample_configs

Debug Enable
This boolean setting turns on debug output for Devsim and outputs to stdout.

Off by default.

Setting Key: debug_enable

Environment Variable: VK_LUNARG_DEVICE_SIMULATION_DEBUG_ENABLE

Exit on Error
This boolean setting will cause Devsim to automatically close the application if it runs into an
error. Note that Devsim will still print error messages if this setting is off.

Off by default.

Setting Key: exit_on_error

Environment Variable: VK_LUNARG_DEVICE_SIMULATION_EXIT_ON_ERROR

Emulate VK_KHR_portability_subset
This boolean setting turns on emulation of the VK_KHR_portability_subset extension. This
will cause Devsim to add the extension to the device extension list and fill out default values in
the extension’s structs VkPhysicalDevicePortabilitySubsetPropertiesKHR and
VkPhysicalDevicePortabiliySubsetFeaturesKHR.

On devices and drivers that natively implement the portability subset extension, this setting will
do nothing.
Please read the following links for more information about the VK_KHR_portability_subset

extension and the Vulkan Portability Initiative:
- https://www.khronos.org/assets/uploads/apis/Vulkan-Portability-Update_Jan21.pdf
- https://www.lunarg.com/wp-content/uploads/2021/06/The-State-of-Vulkan-on-Apple-03Ju

ne-2021.pdf

Off by default.Setting Key: emulate_portability

09/13/2021 Creating Portable Vulkan Applications Using DevSim
11

https://www.khronos.org/assets/uploads/apis/Vulkan-Portability-Update_Jan21.pdf
https://www.lunarg.com/wp-content/uploads/2021/06/The-State-of-Vulkan-on-Apple-03June-2021.pdf
https://www.lunarg.com/wp-content/uploads/2021/06/The-State-of-Vulkan-on-Apple-03June-2021.pdf

Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_EMULATE_PORTABILITY

Modify Device Memory Flags
Devsim will not modify memory flags by default. This boolean value turns on memory flag
modification in case a user needs to perform a test that requires it.

Off by default.

Setting Key: modify_memory_flags

Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_MEMORY_FLAGS

Modify Device Extension list
An Array Combination Mode setting that modifies the array of VkExtensionProperties
returned by vkEnumerateDeviceExtensionProperties.

Setting Key: modify_extension_list

Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_EXTENSION_LIST

Format Modification
Two settings are used to set how format queries are modified:

Modify Device Format list
An Array Combination Mode setting that modifies which formats will be treated as supported by
the vkGetPhysicalDeviceFormatProperties.

Setting Key: modify_format_list

Environment Variable: VK_LUNARG_DEVICE_SIMULATION_MODIFY_FORMAT_LIST

09/13/2021 Creating Portable Vulkan Applications Using DevSim
12

If a format is unsupported, the function will return a VkFormatProperties struct
with all variables set to 0. If a format is set to unsupported by the config file and this setting, then
devsim will modify the VkFormatProperties struct to the unsupported state.

Modify Device Format Properties
An Array Combination Mode setting that modifies the property flags within the
VkFormatProperties struct for each supported format.

Setting Key: modify_format_properties

Environment Variable: VK_LUNARG_DEVICE_SIMULATION_MODIFY_FORMAT_PROPERTIES

Whereas the VK_DEVSIM_MODIFY_FORMAT_LIST setting will 0 out VkFormatProperties structs
completely, this setting allows the user finer control over which properties are supported by each
format.

Note: If a format is marked unsupported by the VK_DEVSIM_MODIFY_FORMAT_LIST, then it will
be set to the unsupported state whether this setting would give it properties or not.

Example: VK_DEVSIM_MODIFY_FORMAT_LIST is set to “blacklist”. VK_FORMAT_R8B8G8A8 is
included in the ArrayOfVkFormatProperties with optimalTilingFeatures set to the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and the
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT. Even if
VK_DEVSIM_MODIFY_FORMAT_PROPERTIES was set to “replace”, calling
vkGetPhysicalDeviceFormatProperties on VK_FORMAT_R8G8B8A8 would return a
VkFormatProperties struct in the unsupported state.

Modify Device Surface Formats
An Array Combination Mode setting that modifies the array of surface formats returned by
vkGetPhysicalDeviceSurfaceFormatsKHR. Surface formats are considered equivalent ONLY
if their format properties AND colorSpace properties are equal to each other.

09/13/2021 Creating Portable Vulkan Applications Using DevSim
13

Setting Key: modify_surface_formats

Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_SURFACE_FORMATS

Modify Device Present Modes
An Array Combination Mode setting that modifies the array of VkPresentModeKHR structs that is
returned by vkGetPhysicalDevicePresentModesKHR.

Setting Key: modify_present_modes

Environment Variable:
VK_LUNARG_DEVICE_SIMULATION_MODIFY_PRESENT_MODES

Array Combination Modes
Some queries to the driver or device return an array of values. Previously to handle these,
Devsim would require the config file to provide a full list of entries to be simulated. This made
simulating specific test cases difficult. To improve the configuration of these arrays of values
Devsim now includes a special category of settings known as Array Combination Mode
Settings.

Array Combination Mode Settings are enum settings with five different valid values:
- “none”: This is the default value for settings in this category. It turns off all modification of

the queries and just uses the real values.
- “replace”: This value handles queried arrays in the original way. It turns on full

replacement of the queried array.
- “whitelist”: This value replaces the queried array with values from the config file only if

those values are included in the original array.
- “blacklist”: This value removes entries from the real array if they are in the config file.

This could be used to test if the application properly handles situations where it does not
have access to certain extensions or features.

- “intersect”: This value adds the entries from the config file to the real array while avoiding
duplicates.

The following settings all take in Array Combination Mode Enums.

All Array Combination Mode settings are “none” by default.

09/13/2021 Creating Portable Vulkan Applications Using DevSim
14

Summary
In its design for cross-platform portability, the Vulkan API includes many checks for platform
capabilities that developers must consider and test when developing Vulkan applications.
Devsim is a powerful and versatile layer that helps developers test and debug their applications
without having to spend valuable resources creating every platform/capability test combination.

09/13/2021 Creating Portable Vulkan Applications Using DevSim
15

